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Abstract 

This paper gives a restatement of Fermat's Last Theorem and Pythagoras in terms of the 

eigenvector solution to a matrix comprising integer roots of unity. It shows that any FLT 

counter-example or Pythagoras solution only exists if it satisfies a certain eigenvector 

equation. The eigenvector equation then leads to three ratio conditions on the counter-

example, each of which explicitly contain the reduced exponent 2n . From this, it is then 

seen that the quadratic exponent clearly decouples a dependency of the ratio conditions on any 

solution. The theory culminates in a restatement of Fermat's Last Theorem as an inner vector 

product that is zero as a consequence of the orthogonality of the eigenvectors. Although 

Fermat's Last Theorem was proven by Wiles 1995, this paper offers a clear distinction 

between Pythagoras and higher order exponents, whilst linking them in the same set of 

equations. It thus provides insight into how Pythagoras attains its solutions as eigenvectors, 

and an alternative path for a possible, relatively direct proof of Fermat's Last Theorem using 

eigenvector methods. 

Outline 

The paper starts by showing that any FLT counter-example or Pythagoras solution (generally 

just referred to as a 'solution' hereafter), must adhere to certain congruence conditions. This 

then leads to the conclusion that any solution is an eigenvector, unity eigenvalue, to a unity 

root matrix, so-named because its elements are integer roots of unity. However, the 

congruence conditions provide a necessary but insufficient condition such that there may be 

eigenvectors satisfying the same eigenvector equation that are not solutions. To remedy this, a 

second 'FLT matrix' is constructed directly from the solution, and this solution is also an 

eigenvector to this FLT matrix. The unity root matrix and the FLT matrix are then equated to 

derive three ratio conditions, exclusive to any solution, relating the unity roots to the 

coordinates raised to a reduced exponent 2n . It is subsequently shown these three ratios can 

be varied by a single integer parameter such that the solution remains invariant to this 

parameter. 

A second eigenvector is introduced that is then related to the eigenvector representing the FLT 

solution/Pythagoras. The two eigenvectors have unique eigenvalues and are consequently 

shown to be orthogonal giving a zero inner vector product, this inner product being none other 

than the original Diophantine equation of FLT. The possible consequences of a non-zero inner 

product (one of the vectors is no longer a true eigenvector) is briefly considered via the 

introduction of a second Diophantine equation, termed 'the Coordinate Equation'. This 

equation is defined such that is satisfies the same congruence relations as that of FLT but, 

otherwise, is less stringent and has actual solutions enabling a numeric study of the inner 

product and, indeed, many aspects of the results in the paper. 

Lastly, since Pythagoras has an infinite set of solutions, all key results for the quadratic 

exponent can be verified and, most importantly, these clearly show the simplistic nature of 

Pythagoras as an eigenvector solution. 
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Theory 

(1) Fermat's Last Theorem (FLT) states that there are no solutions to the following 

Diophantine equation for exponent 2n  and positive integers zyx ,,0  : 

 nnn zyx 0  (1) 

FLT was first proven by Wiles [1]. 

The full list of conditions1 used herein is 

 nzyx ,,, ℤ, 2n , zyx 1  (1b) 

1),gcd(),gcd(),gcd(  xzzyyx  

The exponent purposefully includes the 2n  Pythagorean case since this too is covered in the 

work. There is no restriction on n being odd, even or composite, just 2n . 

Firstly, it is assumed one or more FLT solutions, i.e. counter-examples, exist. Given the 

Pythagorean exponent 2n  is included, this also gives a check on all developments in the 

paper. 

(2) Lemma. Every solution satisfies the following congruences: 

)mod( xzy nn   

 )mod( yzx nn   (2) 

)mod( zyx nn   

Proof. By taking residues of (1) to moduli zyx ,,  then the three congruences (2) can be seen 

to be true and, therefore, every solution must necessarily satisfy them. The congruences by 

themselves are not sufficient to only define solutions zyx ,, 2 and this insufficiency is later 

removed by theorem (14) and related. See also just prior to and including definition (40). 

(3) Definition. An integer root of unity u, simply termed a unity root hereafter, to exponent 

n, mod p, is defined as follows, where p is an integer greater than one but not necessarily 

prime: 

 )mod(1 pu n   (3) 

The modulus p is restricted to the set of the three integers zyx ,,  in (1), which are all greater 

than one by (1b) 

(4) Theorem. There exist unity roots RQP ,,  and RQP ,,  such that every FLT solution 

satisfies the following three linear equations: 

 zQRyx   (4a) 

 PzxRy   (4b) 

 yPQxz   (4c) 

Symbols RQP ,,  and RQP ,,  are just labels here for six distinct unity roots, and no special 

significance or relevance is assigned to the over-struck bar within the context of this paper, 

albeit (23) gives a notable relation between them. RQP ,,  are referred to as the 'conjugates' 

of RQP ,,  and, as will be seen in the Pythagorean case, are identical to RQP ,,  barring the 

sign of R , see (50) further below. 
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Proof. Firstly, taking x as an example, then given the GCD condition (1b), x can be written as 

the linear superposition (4a) in terms of y and z for some integers, denoted here as R and Q . 

This is merely a statement that, for co-prime zyx ,, , there exist some integers R and Q  such 

that the above linear Diophantine equation (4a) has solutions [2]. 

Raising x (4a) to the exponent n gives an equation of the following form, for some 2n  

degree polynomial ),,,( zyQRS : 

 ),,,( zyQRyzSzQyRx nnnnn   (5a) 

Likewise, for y (4b) and z (4c), raising to the exponent n then, for some 2n  degree 

polynomials ),,,( zxRPT  and ),,,( yxQPU , gives 

 ),,,( zxRPxzTzPxRy nnnnn   (5b) 

 ),,,( yxQPxyUyPxQz nnnnn   (5c) 

Taking residues mod zyx ,,  gives nine separate congruences, six of which are 

 )(mod zyRx nnn  , )mod( yzQx nnn    

 )(mod zxRy nnn  , )(mod xzPy nnn   (6) 

 )mod( yxQz nnn  , )mod( xyPz nnn    

and the less useful remaining three are 

 )mod(),,,(0 xzyQRyzSzQyR nnn   

 )(mod),,,(0 yzxRPxzTzPxR nnnn   (7) 

 )(mod),,,(0 zyxQPxyUyPxQ nnnn    

These last three congruences merely serve as defining conditions on the polynomials 

),,,( zyQRS , ),,,( zxRPT  and ),,,( yxQPU , and are of no further use given the polynomials 

require no further definition. 

The six congruences (6) are made consistent with the original congruences (2) by defining the 

variables RQP ,,  and RQP ,,  as unity roots (3), as follows: 

 )mod(1 xPn  , )mod(1 yQn  , )mod(1 zRn   (8) 

)mod(1 xP n  , )mod(1 yQ n  , )mod(1 zR n   

Given the above definitions, then none of the unity roots is ever zero, i.e. 

 RQP ,, ℤ, )0,0,0(),,( RQP , RQP ,, ℤ, )0,0,0(),,( RQP  (9) 

Thus, all solutions zyx ,,  to FLT can be written as three linear equations (4) in terms of the 

unity roots RQP ,,  and RQP ,, . 

(10) Definition A unity root matrix, symbol A , is defined in terms of the unity roots RQP ,,  

and their ‘conjugates’ RQP ,,  as follows: 

 


















0

0

0

PQ

PR

QR

A  (10) 
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(11) Definition. A column vector X is defined as follows in terms of a solution zyx ,, : 

 


















z

y

x

X  (11) 

(12) Theorem. A solution zyx ,,  to FLT/Pythagoras is an eigenvector X (11) to a unity root 

matrix A (10), for unity eigenvalue. 

 XAX   (12) 

Proof: using the definitions of A (10) and X (11), then the three linear equations (4) can be re-

written as the eigenvector equation (12) for unity eigenvalue. Thus, by theorem (4), an FLT 

solution zyx ,,  is an eigenvector to a unity root matrix A (10), unity eigenvalue. 

Although not explicitly required herein, the analytic solution for an eigenvector to A (10) for 

general eigenvalue  , given in terms of the unity roots, is given in explanatory note 3. 

Great care must be taken interpreting this theorem because the eigenvector solutions X are 

actually a superset of solutions (FLT counter-examples or Pythagoras). As noted2, the original 

congruences (2) are not sufficient by themselves and, as a consequence, there may (indeed, 

are) many X satisfying the eigenvector equation [3], a subset of which are FLT counter-

examples. With this in mind, the following definition and related theorem restrict the 

remainder of the paper to FLT counter-examples and Pythagoras solutions only. 

(13) Definition. An FLT matrix, symbol F , is defined as follows for some integers uts ,, : 

 














 








0

0

0

22

22

22

nn

nn

nn

tysx

tzux

szuy

F  (13) 

It is of note that this revised matrix is derived completely independent of matrix A (10), but 

will soon be equated to it, see (20) further below. 

(14) Theorem. X (11) is an eigenvector to an FLT matrix F (13) for unity eigenvalue, i.e. 

XFX  , if and only if X is a solution. 

Proof. If a triple zyx ,,  is a solution then it can be written in the following form, for some 

uts ,, , possibly rational at this stage: 

1111   nnnnn zsxyuxx  

 1111   nnnnn ztyxuyy  (15) 
1111   nnnnn ztyzsxz  

By forming the sum nnn zyx  , it can be verified that this equates to zero as per a solution 

(1). That rational uts ,,  can always be found comes after the next step. However, uts ,,  are not 

actually required further in the paper and that they can, in principle, be determined is 

sufficient to justify (15). 

Dividing the first in (15) by 1nx , the second by 1ny , and the third by 1nz , none of which 

are zero (1b), then the following equations are obtained 

11   nn szuyx  

 11   nn tzuxy  (16) 
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11   nn tysxz  

The justification that rational uts ,,  can always be found comes from the fact that equations 

(16) can be solved backward for uts ,,  and, using t as a single free-parameter, gives 

  11 /  nn xtzyu ,   11 /  nn xtyzs . Hence, given 1nx  is never zero, as above, a rational 

solution for u and s, with t as a free parameter, can always be found. As noted above, uts ,,  

are not required further in this paper. 

The equations (16) can be re-written in eigenvector form as 

 
































 
























z

y

x

tysx

tzux

szuy

z

y

x

nn

nn

nn

0

0

0

22

22

22

 (17) 

hence, by the definition of X (11) and F (13) 

 XFX   (18) 

and thus a solution X can be written as an eigenvector, unity eigenvalue, to matrix F. 

Conversely, starting with X as an eigenvector, unity eigenvalue to matrix F, and working 

backward, we obtain equations (15), which are true only if X is a solution. Hence proving X is 

an eigenvector to an FLT matrix F for unity eigenvalue if and only if X is an FLT solution. 

(19) Theorem. If X (11) is a solution then F (13) is a unity root matrix A (10). 

Proof. By theorem (14), if X  is a solution then it is an eigenvector to a matrix of the form F 

(13), but by theorem (12), all solutions are eigenvectors, for unity eigenvalue, to a unity root 

matrix A (10). Thus, by implication, F (13) must be a unity root matrix (10). 

(20) Corollary. As a corollary to theorem (19), there exist a particular set of unity roots 

RQP ,,  and RQP ,,  such that the unity root matrix A (10) and F (13) are equivalent, i.e. 

  FA
















0

0

0

PQ

PR

QR















 








0

0

0

22

22

22

nn

nn

nn

tysx

tzux

szuy

 (20) 

Equating the two thus gives the unity roots as: 

2 ntzP , 2 ntyP  

 2 nsxQ , 2 nszQ  (21) 

2 nuyR , 2 nuxR  

Note that the set of unity roots satisfying the equality in (20) is now termed a 'particular' 

solution because, to reiterate earlier comments, the unity roots are defined through 

congruences (2) that allow a wide range of eigenvector solutions X (11), only a subset of 

which are FLT counter-examples. Since A (10) is formed from these unity roots, it too may 

have many forms, only a subset of which is valid for an FLT counter-example - this subset 

being termed the 'particular solution'. In fact, it will be seen shortly that the particular solution 

is actually only unique to within a single free-parameter, integer m (24) further below, and so 

the particular solution is actually an infinite set parameterised by m. 

(22) Theorem. Every solution satisfies the following ratio conditions relating the unity roots 

},,,,,{ RQPRQP to the solution zyx ,,  



Fermat's Last Theorem and Pythagoras as an Eigenvector Problem 

Page 6 of 12 

Issue 1.1 18/04/2021 

 
2

2






n

n

y

z

P

P
, 

2

2






n

n

x

z

Q

Q
, 

2

2






n

n

x

y

R

R
 (22) 

Proof. The ratio conditions (22) are obtained directly by eliminating uts ,,  in (21). In doing 

so, the unity roots are seen to relate directly to the solution in zyx ,,  with absolutely no 

dependence on uts ,, . Since equations (21) are true for every solution, as a culmination of 

theorem's (14), (19) and corollary (22), then every solution must satisfy these relations. Since 

there has been no explicit restriction of the exponent to 2n  in any of the proofs, the 

conditions are also valid for 2n , i.e. Pythagoras. 

It is noted that there are no divide-by-zero issues in these relations given neither the 

coordinates nor unity roots are zero by conditions (1b) and (9). 

(23) Lemma. The unity root matrix F (13) has a zero determinant and, as such for a particular 

solution, the unity roots satisfy the condition 

 )det(F )det(A 0 RQPPQR  (23) 

Proof. From the form of F (13), it is easily determined that the determinant is zero: working 

along any of the rows or columns gives just two terms 222  nnn zystux  that cancel upon 

summation leaving a zero determinant. On the other hand, the determinant of A (10) is also 

RQPPQR   and thus, given the unity root equalities (21), it is seen that this determinant is 

therefore also zero, hence proving (23). Note too that by multiplying out the ratios PP / , 

QQ /  and RR /  in (22), the coordinate terms zyx ,,  cancel, also confirming (23). 

(24) Definition. A global variation is defined as the following transformation of the unity 

roots (8) in terms of a single, arbitrary integer m: 

xRQmPP  , mQRxPP  , m ℤ 

 mQRyQQ  , RyQmQQ   (24) 

RzQmRR  , zRQmRR   

(25) Theorem. Every solution is invariant to a global variation (24) in the unity roots. 

Proof. Under global variation (24), the ratio conditions (22) become 

 
2

2









n

n

y

z

mQRxP

xRQmP
, 

2

2









n

n

x

z

mQRyQ

RyQmQ
, 

2

2









n

n

x

y

zRQmR

RzQmR
, 2n  (25) 

Starting with the second, QQ /  ratio first, there is a common factor mRy1  that cancels top 

and bottom leaving the original ratio (22). Similarly, the third ratio RR /  has a common 

factor zQm1  that also cancels top and bottom to give the original ratio. The first ratio PP /  

requires a little more work: using 0 RQPPQR  (23) to obtain PPQRRQ / , and then 

substituting for RQ  into the expression for PP / , gives a common factor PmQRx /1  that 

also cancels top and bottom leaving the original ratios. 

Thus, in all three ratios PP / , QQ /  and RR / , applying the global variation returns the 

original ratio conditions (22), and so proving, by theorem (22), every FLT solution is 

invariant to a global variation (24) in the unity roots. 
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All the work so far has concentrated on the solution in zyx ,,  and its related eigenvector X 

(11). However, there is a second, equally important 'conjugate' eigenvector comprising the 

solution raised to the power 1n . 

(26) Definition. A conjugate eigenvector X  is defined as the following row-vector 

  111   nnn zyxX  (26) 

(27) Lemma. The conjugate eigenvector X  (26) is a row eigenvector to the FLT matrix F 

(13) for eigenvalue -1, i.e. 

 XFX   (27) 

Proof. The proof is a straightforward evaluation of the eigenvector equation using the 

definitions of X  (26) and F (13), and then comparing with the definitions (15). For example, 

the first element evaluates as 2121)1(   nnnn xszxuyFX , and comparing with 
1111   nnnnn zsxyuxx  (15) shows that 1)1(  nxFX . Similarly evaluating the other two 

elements gives 1)2(  nyFX  and 1)3(  nzFX  hence  111   nnn zyxFX  and so 

XX F  by definition (26) thus proving (27). 

Note that by theorem (19) and its corollary (20), whereby matrix A (10) is equated to F if X is 

a solution, then (27) can also be written in terms of A, i.e. 

  FA XAX   (28) 

The conjugate eigenvector X  relates to the eigenvector X via a linear, matrix transformation. 

(29) Definition. The T operator is defined as the following, diagonal-only matrix given in 

terms of the unity roots: 

 


















 

QQ

RRx n

/00

0/0

001
2

T  (29) 

(30) Lemma. The conjugate eigenvector X  (26) is related to the FLT eigenvector solution X 

(11) via the following T operator transformation: 

  TTXX   (30) 

Proof. Substituting for the diagonal elements in terms of the solution, using the ratio 

conditions (22), gives 

 

























2

2

2

00

00

00

n

n

n

z

y

x

T  (31) 

Multiplying X (11) by this form of T, and transposing, gives X  (26), hence proving (30). 

Note that this form (31) is strictly for solutions only, given X is assumed to be a solution and 

the ratio conditions in (22) are for solutions only. On the other hand, (29) is valid for a wider 

range of eigenvectors X to A, but this fact is of note only and not required further. 
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(32) Lemma. The T operator is invariant to a global variation (24) in the unity roots. 

Proof. By theorem (25) every solution zyx ,,  is invariant to a global variation (24) in the 

unity roots and thus, from the form of the T operator (31), the T operator itself is invariant to 

a global variation in the unity roots. 

(33) Lemma. The conjugate eigenvector X  (26) is invariant to a global variation (24) in the 

unity roots. 

Proof. By theorem (25) and lemma (32), both the eigenvector solution X (11) and T operator, 

respectively, are invariant to a global variation in the unity roots; hence the conjugate 

eigenvector X  is also invariant to a global variation in the unity roots. 

(34) Theorem. If zyx ,,  is a solution then the inner product of the conjugate vector X  (26) 

with X (11) is zero, i.e. 

 0XX  (34) 

Proof. This is simply proven by the inner product definition, which here is the multiplication 

of the column vector X by the conjugate row vector X , and given zyx ,,  is a solution (1), 

then 

 0 nnn zyxXX  (35) 

Whilst this is seemingly trivial, it is an important restatement of FLT in terms of the inner 

product of the eigenvector X, which is a vector representation of the solution zyx ,, , with its 

conjugate form X , related to X by (30). Effectively it is the culmination of all the results in 

the paper, recasting Fermat's Last Theorem in a linear algebraic form involving the 

eigenvectors to a unity root matrix. 

(36) Corollary. As a corollary to theorem (34), the inner product XX  is invariant to a global 

variation (24) in the unity roots. 

Proof. This is simply a consequence of theorem (25) and lemma (33), which state that X and 

X  respectively, are invariant to a global variation in the unity roots. 

The inner product (34) is actually also a consequence of a standard result in linear algebra [4], 

namely 'orthogonality of eigenvectors to different eigenvalues'4. In this case, the row 

eigenvector X  for eigenvalue -1, and the column eigenvector X, for eigenvalue +1. 

Most importantly, any new proof of FLT could focus on showing such an integer vector X  

(26), that is a row eigenvector to a unity root matrix for eigenvalue -1, cannot exist. If it did 

exist, by orthogonality alone, it would have to be an FLT counter-example. 

An FLT-like Diophantine Equation 

Although the inner product (34) is zero for any FLT solutions (were they to exist), and 

Pythagoras, it does have a useful, non-zero value when considering a modified form of FLT, 

known as the Coordinate Equation (CE), defined next. The CE equation is the general solution 

to the congruence relations (2) and a formal derivation of this equation, with related theorems, 

is given in [5]; suffice to say, the CE has solutions for all exponents. 

(40) Definition. The Coordinate Equation is defined in terms of zyx ,,  (1b) as per 

eigenvector X (11), for integer k, as follows: 

 kxyzzyx nnn 0 , k ℤ (40) 
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It can be seen that this equation satisfies the congruence relations (2). 

(41) Theorem. There are no solutions to the Coordinate Equation for 0k . 

Proof. For 0k  the CE reduces to FLT (1) and hence, by Wiles [1], there are no solutions 

for 0k . 

Nevertheless, for every exponent 2n , there are solutions to the CE for which k is non-zero, 

some of which are given in [3]. Not least, for odd exponents, there is always a solution when 

yxz  , albeit in this case k becomes very large very soon, as indeed it does for virtually all 

other solutions. 

Note that a non-zero value for k means that X is not an FLT counter-example or Pythagoras 

solution, but it does still have its defining form (11), and it is still an eigenvector to a unity 

root matrix (12). Whilst X  remains strictly defined as in (26), for non-zero k it no longer 

relates to X via (30) since the form of the T operator (31) is only valid for FLT counter-

examples or Pythagoras solutions. Most importantly, for non-zero k, X  is no longer an 

eigenvector to the unity root matrix, it is not orthogonal to X and, accordingly, the inner 

product XX  (34) is non-zero. These points have not been proven here and are considered 

outside the scope of the paper. The important point is that, using the eigenvector inner product 

XX , the CE (40) can be written as  

 kxyz XX0  (42) 

and rearranging gives k as  

 
xyz

k
XX

  (43) 

Thus, the non-zero inner product XX , suitably scaled by the product xyz/1  is, in effect, a 

measure of the deviation of CE solutions from FLT. A possible FLT proof could therefore 

show k is never zero, albeit its actual non-zero value being of no consequence. 

Pythagoras 

The above is general, for all exponents 2n  and, whilst Wiles [1] proves there are actually 

no FLT solutions (counter-examples), the relations can easily be verified for Pythagoras by 

setting the exponent to 2n . 

(50) Definition. The Pythagoras Conditions are given by the ratio conditions (22) for a 

quadratic exponent 2n , i.e. 

 PP  , QQ  , RR  , 2n  (50) 

and makes the unity roots RQP ,,  identical to RQP ,,  barring the sign of R . 

It is notable that there is now no functional dependence of the unity root ratios on the solution 

zyx ,,  in this Pythagorean case since the 2n  exponent in (22) goes to zero. 

Applying the conditions (50) to (21), the integers uts ,,  in A (13) become identical to the 

above Pythagorean unity root forms, i.e. 

 Pt  , Qs  , Ru  , 2n  (51) 

and the two forms of unity root matrix, A and F in (20), become 
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

















0

0

0

PQ

PR

QR

FA , 2n  (52) 

Applying the Pythagoras Conditions to the global variational terms (24) gives 

 mQRxPP  , mQRyQQ  , mQRzRR  , 2n  (53) 

Given that the factor of QR  is now common to all three (53), it can be absorbed into the 

integer m such that the above transformations become 

mQRm  , 2n  

 mxPP  , myQQ  , mzRR   (54) 

It is seen that, under Pythagoras Conditions, the variational terms mx , my  and mz  

contain no unity root dependence, unlike (24), and are purely a function of the Pythagorean 

solution zyx ,, . 

Under Pythagoras, the conjugate eigenvector X  (26) is now almost identical to X (11), i.e. 

  zyx X , 2n  (55) 

and with this, the Pythagoras equation in inner product form is thus 

 0222  zyxXX , 2n  (56) 

Of note here, and unlike the FLT solution, X  is also a solution, i.e. a Pythagorean triple, and 

identical to X ( zyx ,, ) barring the sign of z. That X , for FLT 2n , is never a solution is 

given by Wiles [1], just like X is never actually a solution. 

With X  given by (55), it is not surprising that the T operator (31), as used in (30) to derive X  

from X , reduces to a constant for all Pythagoras solutions, i.e. 

 




















100

010

001

T , 2n  (57) 

To summarise the Pythagorean case, the ratios of the unity roots RQP ,,  to their conjugates 

RQP ,,  have no functional dependence on the solution zyx ,,  (50), whilst the global 

variational terms have no functional dependence on the unity roots (54). In effect, the 

Pythagorean case decouples the unity root ratios from the solution. 

Summary 

Every FLT counter-example and Pythagoras solution can be represented as an eigenvector to 

a matrix comprising the integer roots of unity. The unity root matrix is arbitrary to within a 

single integer parameter. Equating the unity root elements of the matrix to the eigenvector 

solution gives a set of three ratio conditions, whereby the ratio of the unity roots relates to the 

counter-example/solution raised to the reduced degree 2n , thus enabling a clear distinction 

between Pythagoras and FLT to be made. 

The ratio conditions are shown to be invariant to variation by a single 'global' parameter, thus 

making all pertinent equations in the eigenvectors also invariant to this single parametric 

variation. 
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A second 'conjugate' eigenvector is introduced that relates, via a matrix operator, to the 

eigenvector representing the FLT solution/Pythagoras. Given the two eigenvectors have 

unique eigenvalues then they are orthogonal with a zero inner vector product, and this 

orthogonality of eigenvectors becomes an equivalent statement of FLT. 

On the other hand, non-orthogonality (when the second vector is no longer a true eigenvector 

to the unity root matrix) implies a non-zero inner product, which is shown to be a measure of 

the deviation of legitimate solutions to a second, FLT-like Diophantine equation (the 

'Coordinate Equation') from FLT. 

Lastly, since Pythagoras has an infinite set of solutions, all key results developed throughout 

the paper can be verified for the quadratic exponent and, most importantly, show clearly the 

simplistic nature of Pythagoras as an eigenvector solution. In particular, Pythagoras shows a 

decoupling of the unity root ratios from the solution, unlike FLT, which has an inherent, linear 

( 3n ) and non-linear ( 3n ) dependency relationship. 

Conclusion 

Fermat's Last Theorem can be formulated as an eigenvector problem in a matrix comprising 

integer roots of unity. In particular, its mathematical statement is equivalent to the 

orthogonality of two of the eigenvectors of the unity root matrix to distinct eigenvalues 1 . 
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Addendum. Explanatory Notes 

1. The list of conditions is almost identical to those of FLT, barring the proof is valid for 

quadratic exponents, whilst FLT is stated for cubic and higher order exponents. In addition, 

FLT is usually restricted to positive integers greater than zero, whereas the proof is restricted 

to positive integers greater than one. This is because the proof uses the integers zyx ,,  as 

moduli, and these are greater than one to avoid triviality as in the fact that every non-zero 

integer is congruent to zero modulo one, and thus unity roots (3) have no meaning for a unit 

modulus - such roots being essential in this paper.  Furthermore, restricting to integers greater 

than one, rather than greater than zero, has absolutely no consequence for exponents 2n  

since there cannot possibly be any solutions with the smallest integer (x here by convention) 

being one. If 1x , then it implies, that there are integers y and z, ( 1 xyz ) such that 

nn yz 1 . This is not the case for 2y  or more since, rearranging FLT, this implies 

1 nn yz , i.e. the difference of two nth powers is unity.  Indeed, the difference of two 

http://www.urmt.org/urmt_numeric_solutions.pdf
http://www.urmt.org/Coordinate_Eqn_FLT.pdf
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numbers raised to an nth power is always much greater than unity and to see this (rather 

obvious fact), one need only expand nz  binomially using ayz   for some integer 0a , 

whereby ayayyz nnn  1  for 2n . Given 0a  and 2y  then this is clearly always 

greater than one. 

2. It is stressed that Lemma (2) is necessity, not sufficiency, and this is intentional because it 

allows for solutions to the congruences (2) to be studied within the context of an FLT-like 

Diophantine Equation derived from (2), known as The 'Coordinate Equation' (40), with 

numeric solutions given in [3]. 

3. There are three forms of analytic solution for each eigenvector to A (10), eigenvalue  , 

given in terms of the unity roots (8) as follows, where 1  for X (11) and 1  for X  

(26) - see further below: 

form 1:
























PRQ

PQR

PP









2

X , form 2: 
























QRP

QQ

QPR








2

X , form 3: 
























RR

RQP

RPQ

2





X  

These are unscaled forms and usually contain large common factors. To make them primitive, 

the GCD in each has to be removed. Since an eigenvector is only unique to within a scale 

factor, once the GCD is removed (different for each form), they then become one and the 

same primitive eigenvector. 

The matrix A (10) has a 'conjugate' symmetry, which means swapping unity roots RQP ,,  

with conjugates RQP ,,  is equivalent to transposing the matrix. Using this fact, the row 

eigenvectors, e.g. X  (26) 1 , can be obtained by swapping the unity roots likewise in the 

above analytic forms and transposing, e.g. form 1  RPQQPRPP  
2

1X . 

Again, these need GCD removal to make them primitive. 

Given the trace of A (10) is zero, and that the sum of the eigenvalues is equal to the trace [4], 

then there is also an eigenvalue 0 . Substituting 0  in the above analytic solutions 

gives particularly simple forms since all terms in   obviously disappear. 

4. In this case, because A (10) is not symmetric, the orthogonality applies between a row and 

column eigenvector, i.e. row vector X  (26), and column vector X (11). Using XAX   (12), 

and multiplying by on the left by row vector X  to form the inner XX  product, gives 

XXAXX  . Similarly, using XAX   (28), and multiplying on the right by X to form the 

same inner product, gives XXAXX  . Equating the two results for AXX  implies 

XXXX   which can only be true if the inner product 0XX  (34) since the eigenvectors are 

never trivially all zero. 

 


