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Abstract. This paper is an overview of Unity Root Matrix Theory (URMT) as 
developed from its inception around 2009. It begins with URMT’s origins in number 
theory, and a modified form of Fermat’s Last Theorem that has an infinite set of 
integer solutions given as eigenvectors to a unity root matrix. Such solutions are 
derived by application of an invariance principle to the characteristic eigenvalue 
equation for the unity root matrix, and classed as an energy conservation equation. The 
corresponding, three-dimensional eigenvector solution is related to dynamical 
quantities and, ultimately, quantum mechanics by virtue of URMT’s inherent unitary 
nature. A five-dimensional eigenvector solution is also presented, representing a four-
vector event in Special Relativity, and this solution is shown to possess Hubble-like 
expansion. A variant of this solution is also linked to the relativistic energy-
momentum equation. The paper completes with an illustration of the compactification 
property of URMT’s higher dimensional solution. 
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Acronyms and Abbreviations 

DCE : Dynamical Conservation Equation 
FLT : Fermat’s Last Theorem 
QM : Quantum Mechanics 
QPI : Quantum Physical Interpretation 
SPI : Standard Physical Interpretation 
STR : Special Theory of Relativity 
URMT : Unity Root Matrix Theory 
URM n  : the nn  matrix formulation of URMT, 2n . 
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1 Origins in Number Theory 

URMT began with an equation, called the ‘coordinate equation’, originating from Fermat’s Last 
Theorem (FLT). This coordinate equation is given in terms of three integers variables zyx ,, , for 

some integer k , as 

 xyzkzyx nnn 0 . (1.0) 

The full list of conditions is 

 nkzyx ,,,, ℤ, 2n , zyx 1 , 1),gcd(),gcd(),gcd(  xzzyyx . (1.1) 

Furthermore the exponent n is also restricted to prime only herein, to keep things simple. It could be 
composite, but this is not necessary for illustrative purposes. 

Were k to be zero, then this equation would be identical to the famous equation of Fermat’s Last 
Theorem (FLT), i.e. 

 nnn zyx 0 , FLT, 0k . (1.2) 

Of course, if there are to be integer solutions zyx ,, , then k  is never zero for 2n , as proven by 
Wiles [1]. However, unlike FLT, this equation has solutions, in integers, for non-zero k. By defining a 
vector 3X  comprising the integer solution zyx ,,  
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then this vector is an eigenvector of URMT’s founding unity root matrix 3A  (defined next), for unity 

eigenvalue, i.e. 

   333 XXA , (1.4) 

where the unity root matrix 3A  is defined as follows, in terms of three unity roots RQP ,,  and their 

‘conjugates’ RQP ,,  (see Appendix (A) for an introduction to unity roots): 
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The unity roots, also known as primitive roots in number theory, are defined by the following 
congruences: 

 )mod(1 xP n  , )mod(1 yQ n  , )mod(1 zR n   (1.6a) 

 )mod(1 xP n  , )mod(1 yQ n  , )mod(1 zR n  . (1.6b) 
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No triplet of unity roots is ever entirely zero, i.e. null. 

 RQP ,, ℤ, )0,0,0(),,( RQP , RQP ,, ℤ, )0,0,0(),,( RQP . (1.6c) 

However, contrary to the above definition, it is possible that one or two (but not all three) can be zero 
in special circumstances, not discussed further herein. 

In addition, RQP ,,  relate to their standard forms, RQP ,, , by the following 'conjugate relations' 

 )(mod1 xPP n , )(mod1 yQQ n , )(mod1 zRR n . (1.7) 

The eigenvector equation (1.4) forms the basis of URMT and, crucially, for a quadratic exponent n in 
(1), leads to a physical interpretation that is the basis of ‘Physics in Integers’ [2], i.e. the premise that 
the physical laws are really those of number theory and nothing more. As a taster for this, the URMT 
eigenvalue C (known as ‘big C’) will later be equated with both the speed of light, ‘little c’, and 

Planck’s constant h . In other words, physical laws actually arise from the laws of integer arithmetic 
and that, far from integers approximating the continuous, real-valued (or complex) continuous 
differential equations of current physical laws, including string theory, it is, in fact, the reverse, with 
real numbers considered to approximate what is ultimately a discrete, integer-only theory of nature. 
Taken to its extreme, nature follows the laws of number theory and, in particular, for a quadratic 
exponent, sums and squares its way into existence. 

The eigenvector connection between solutions to (1.0) and unity root matrices appears to be a URMT-
unique result, and original, but that is not to say that this is also published somewhere else, albeit it is 
highly likely to be phrased in a much different way. However, after many years and public postings, 
no refutation of originality, or accusation of plagiarism, has been received, neither do unity root 
matrices in the form (1.5) appear to be the subject of any prior published work. It is noted by the 
author that there are numerous matrices containing the complex roots of unity, e.g. weight matrices 
used in discrete Fourier transforms, but these are not the same, or isomorphic, to those unity root 
matrices studied in URMT. Lastly, extensive numerical studies have not revealed any errors or 
contradictions. 

2 Example 

This is the classic, cubic example (9,31,70) given in [2]#1. 

 3n , 9x , 31y , 70z . (2.0a) 

The coordinate equation (1.0) 

 70.31.9.16703190 333  , 16k . (2.0b) 

Dynamical variables RQP ,,  (1.6a) and their conjugates RQP ,,  (1.6b) 

 2P , 6Q , 11R , (2.1a) 

 4P , 5Q , 19R . (2.1b) 
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The unity root matrix (1.5) 
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The eigenvector solution (1.3) 
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The eigenvector equation (1.4), 'dynamical equations', in matrix form 

   333 XXA , 
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Unity Root Properties (1.6) 

 )mod(1 xP n  , )9mod(123  .  

 )mod(1 yQ n  , )31mod(163  .  

 )mod(1 zR n  , )70mod(1113  . (2.3) 

 )mod(1 xP n  , )9mod(143  .  

 )mod(1 yQ n  , )31mod(153  .  

 )mod(1 zR n  , )70mod(1193  ..  

Conjugate Relations (1.7) 

 )(mod1 xPP n , )9(mod)2(4 2 .  

 )(mod1 yQQ n , )31(mod)6(5 2 . (2.4) 

 )(mod1 zRR n , )70(mod)11(19 2 .  

The kinetic term K , see (4.3) further below, 

 247 RRQQPPK . (2.5) 

The Potential term V, see (4.4) further below, 

 248 RQPPQRV . (2.6) 
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The Dynamical Conservation Equation, see (4.6) further below, for unity eigenvalue 1C  

 2482471  VK . (2.7) 

The divisibility factors ,   and  , see (4.16) and (4.18) further below, for unity eigenvalue 1C  

 xPP  )1( , 1 .  

 yQQ  )1( , 1 . (2.8) 

 zRR  )1( , 3 .  

The co-vector  3X , see (4.16) further below, 

  3113 X . (2.9) 

The dual dynamical equations   3
3

3 XAX  in matrix form, see (4.17) further below, for unity 

eigenvalue 1C  
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The Potential Equation in vector form, see (4.20b) further below, for unity eigenvalue 1C  

 V
 23

3 XX ,   2482250
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9
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3 A Link to the Riemann Hypothesis. 

Whilst the single eigenvalue of unity, as given by (1.4), is key to URMT and its unity roots, the other 
two eigenvalues are of note to those interested in the Riemann Hypothesis. This is because the unity 
root matrix 3A  (1.5) has a zero trace, i.e. the leading diagonal sums to zero, in fact it is all-zero. From 

linear algebra [3], the sum of the eigenvalues is given by the trace, and hence URMT’s eigenvalues 
sum to zero. Since the first eigenvalue is unity ( 11  ), this means the other two eigenvalues ( 32 , ) 

must sum to minus one, i.e.  

 0321   , 11   132   . (3.1) 

If these other two eigenvalues are complex then they must be of the following form for some real-
valued b, i.e. 

 bi
2

1
2 , bi

2

1
3 , b ℝ, 0b . (3.2) 
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and thus they lie on the ‘critical line’ 2/1x  in the complex plane iyxz  . In the Riemann 

hypothesis it is the trivial zeros that lie on the 2/1 line, and the non-trivial zeros lie along the 
positive, 2/1x  line. However, it is very easy in URMT to convert any positive unity root 
eigenvalue solution to a negative solution, simply by reversing the sign of 3A , i.e. 33 AA  , 

which implies 11  , hence 2/12/1  , and thus the URMT solution now relates directly to 

the 2/1x  line, and gives a link to the Riemann Hypothesis. Indeed, the subject of Physics and the 
Riemann Hypothesis is a well-explored field with some solid background, e.g. [4]. For a more detailed 
analysis of the URMT solution and how to vary the value of b in (3.2), see [5]. 

4 Physical Development 

In preparation for some physical aspects, the earlier, pertinent equations are re-written for a non-unity 
eigenvalue ‘big C ’ as follows: 

   333 XXA C , C ℤ, 1C . (4.0) 

Since C will be related to a velocity, which can be the speed of light, it is preferable to use symbol C 
rather than unity, so that, in general. 

 )mod( xCP nn  , )mod( yCQ nn  ,  )mod( zCR nn  , n ℤ, 2n , (4.1a) 

 )mod( xCP nn  , )mod( yCQ nn  , )mod( zCR nn  , (4.1b) 

 )(mod12 xPPC nn   , )(mod12 yQQC nn   , )(mod12 zRRC nn   . (4.1c) 

In fact, URMT only requires the unity definition 1C , and cases 1C  can be reduced to the unity 
eigenvalue problem by transformation [2]#6. Nevertheless, it is much more convenient, from a 
physical viewpoint, to use symbol C, unity or otherwise, for comparison of URMT equations with 
those in Physics. 

From here onward, the unity roots will be termed ‘dynamical variables as they can consistently be 
ascribed to a velocity quantity, so too the eigenvalue C. It is actually more useful to think of their 

square forms as energy, per unit mass, i.e. for Newtonian kinetic energy K then. mKv 2/2   for 
velocity v, mass m. 

4.1 The Dynamical Conservation Equation 

The usual method to solve eigenvector equations such as (4.0) is via straightforward algebraic 
manipulation, starting by expanding the matrix equation into three linear equations. However, this is 
not the URMT way, and a more physical derivation is given shortly in terms of a single energy 
equation, which is subjected to variational methods, coupled with an invariance principle. This is 
therefore conceptually similar to the Lagrangian method and the principle of least action. 

To ensure any eigenvector equation has a solution, the following non-singular, determinant condition 
applies to 3A , for arbitrary eigenvalue  : 

 0)det( 33  IA . (4.2a) 

This expands to the following characteristic equation: 
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 )()(0 3 RQPPQRRRQQPP   . (4.2b) 

Of course, one such eigenvalue C , is already specified (4.0). However, its accompanying eigenvector 

3X  has not yet been given in terms of the dynamical variables (unity roots), and will be derived 

shortly (4.13). 

Defining a kinetic energy term K  and potential energy term V  (per unit mass) as follows 

 RRQQPPK  , kinetic energy per unit mass. (4.3) 

 CRQPPQRV /)(  , potential energy per unit mass. (4.4) 

then (4.2b) shortens to 

 VCK  30 . (4.5) 

Note that naming the two expressions, (4.3) and (4.4), as energy terms is justified on the basis of the 
resulting physical consistency of the equations, derived next, throughout URMT’s physical 
development. In particular, the kinetic term is seen to comprise quadratic degree terms that are the 
product of a velocity (4.42) and its conjugate, akin to energy terms in the Lagrangian of classical 
mechanics, using generalised velocities (or momentum) [6]. The form of the Potential is certainly less 
recognisable but, again, does lead to a physically consistent interpretation as a scalar field with a 
gradient related to a force, see Section (4.4). 

Substituting for the single eigenvalue C  and dividing throughout by C , which is always positive, 
non-zero (4.0), then the following 'Dynamical Conservation Equation' is obtained 

The Dynamical Conservation Equation (DCE) 

 VKC 2  (4.6) 

 CRQPPQRRRQQPPC /)(2   

By virtue of its name, this is a true conservation equation and one of several in URMT. Consequently, 
the eigenvalue C is also known as the ‘invariant eigenvalue’. 

This DCE is the founding equation for the physical development of the theory. Indeed, barring the 
explicit omission of mass, it can already be seen where URMT is headed with (4.6), i.e. multiplying by 
the mass m  gives 

 )(2 VKmmCE  , K  and V  are per unit mass, (4.7) 

 2mcE  , cC  . (4.7b) 

This energy equation pervades all URMT, as will be seen throughout this paper, and offers some 
justification for ascribing the terms (4.3) and (4.4) to kinetic and potential energies per unit mass, i.e. 
velocity squared. The interpretation of the dynamical variables (unity roots) as velocity quantities is 
justified by the consistent physical results it gives, and is known as the Standard Physical 
Interpretation (SPI) detailed again in Section (4.9). There is also a related, more recent Quantum 
Physical Interpretation (QPI) detailed in Section (4.13). 
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In general, under the SPI, invariant eigenvalue C is equated to a velocity quantity, and it is easily seen 
that if it were the speed of light, (4.7) would be that of Einstein’s famous equation. This aspect takes 
on a more solid basis when the three-dimensional, 3x3 matrix theory, that is specifically known as 
URM3, becomes a 5x5 matrix theory known as URM5, which is the basis of URMT’s relativistic 
connections, Section (5). There is also a 2x2 theory, URM2, which is the basis of quantum-mechanical 
‘spin’ in URMT [7] (think 2x2 Pauli spin matrices [8]). In relation to spin, URM3 itself has another 
physical re-interpretation where the dynamical variables are angular velocities instead of linear 
velocities, and then it becomes a theory of angular momentum. This latter interpretation was actually 
the basis for naming the unity roots RQP ,,  as dynamical variables, since it was seen that they are 
indeed related to the commonly-used (in aerospace at least), body rates rqp ,, . 

4.2 Variational Methods 

The DCE (4.6) is actually solved for its eigenvectors by a variational method, unique to URMT, which 
gives both the equations and their solution. Contrast this with the Lagrangian approach (variational 
calculus), which generally gives just the equations of motion that are then solved separately. 

Local variations 

Because the dynamical variables are unity roots, defined by congruences (4.1), they are not unique, 
and their congruence definitions hold true for three, arbitrary, integer 'local' variations  ,,  

 xPP  , xPP  , 

 yQQ  , yQQ  , (4.8) 

 zRR  , zRR  , 

  ,, ℤ. 

Note that there is also a ‘global Pythagoras’ variation, detailed later in Section (4.6). 

Rewinding briefly to the original coordinate equation (1.0), and its solution x,y,z, it is seen that the 
dynamical variables (unity roots), are not present and, for every solution, there are therefore an infinite 
set of dynamical variables as parameterised by the above three local variations  ,, .  Thus, when 
applying these local transformations (4.8) to the DCE (4.6), the DCE itself must remain invariant to 

these variations with a conserved value of 2C  and, upon its expansion, all terms in  ,,  must 
therefore equate to zero. Doing this gives six separate equations, one for each of the six possible 
combinations of the local variational elements  ,, . Collecting the three quadratic variations in  , 

  and  , gives the following three linear equations: 

 zQRyCx  ,   term,  

 PzxRCy  ,   term (4.9) 

 yPQxCz  ,   terms  

These three equations are nothing more than the eigenvector matrix equation (1.4) written out in full to 
give three linear equations. Thus, this variational method has provided the Lagrangian-equivalent of 
the equations of motion and, consequently, the three linear equations (4.9) are known hereafter in 
URMT as the dynamical equations. 



An Overview of Unity Root Matrix Theory 2018 

Page 10 of 39 
Draft F 06/03/2018 

R J Miller, http://www.urmt.org 

As for the actual solution to these dynamical equations, the remaining three, linear (first degree) 
variational terms in  ,,  give the three possible solutions in zyx ,,  to these equations, two of 
which are independent: 

 )()( PRCQyPQRCz  ,   term, z  in terms of y , (4.10a) 

   )()( QRPCxQPCRz  ,   term, z  in terms of x , (4.10b) 

  )()( RQCPxRPQCy  ,   term, y  in terms of x . (4.10c) 

One possible eigenvector solution for 3X  can be obtained from (4.10b) and (4.10c) in terms of x  as 

a parameter: 
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See [2]#5, Appendix (C) for a full list of the nine possible forms of eigenvector solution (three of 
which are linearly independent), given for a unity eigenvalue 1C . 

Whilst the equations above have been written for eigenvalue C, ,i.e. C , they are valid for all three 
eigenvalues simply by replacing C with the other two eigenvalues. These have not been given yet, 
excepting the reference to Riemann (3.2), which only concerns the other two eigenvalues. 

The analytic form (4.13) of the eigenvector 3X , eigenvalue C , is not actually required further, 

and its general form 3X  (1.3) is sufficient to proceed. 

4.3 The Invariance Principle 

Like all good physical theories, URMT does have a founding principle, which is basically a 
restatement of the above mathematical variational technique, namely that all equations in the 
dynamical variables, plus the eigenvector 3X  and eigenvalue C , remain invariant to these variations, 

and this is enshrined in URMT in the following invariance principle: 

 The Invariance Principle (4.15) 

The dynamical equations and their solutions are invariant 
to a coordinate transformation in the dynamical variables. 

where the dynamical equations are those given by (4.9), and the coordinate transformation in the 
dynamical variables is given by the above local variations (4.8). 

In fact, one can actually develop URMT from the DCE (4.6) acting as a founding Lagrangian 
(technically a Hamiltonian since it is written as the sum of kinetic and potential energies), by applying 
the Invariance Principle and ultimately deriving the founding coordinate equation (1.0). This process is 
very similar to mathematical physics, whereby the physical laws came historically first, and then 
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variational calculus enabled them to be derived from a founding principle, i.e. The Principle of Least 
Action [6]. This latter method was then used in quantum field theory whereby the Lagrangian itself 
usually comes first, primarily constructed by adherence to physical symmetry arguments, and from 
which the field equations of the underlying physical theory are then determined and solved for 
hopefully meaningful (physically realistic) equations [9]. 

Thus, to summarise so far, URMT starts with the integer coordinate equation (1.0), which has a 
solution given by the eigenvector equation (4.0), and this solution is a function of the dynamical 
variables (4.1). The non-singular condition on this eigenvector equation gives the Dynamical 
Conservation Equation (4.6), which acts as a Lagrangian such that, when a variational method is 
applied (4.8), in accordance with the Invariance Principle (4.15), the dynamical equations (4.9) and 
their eigenvector solution (4.10) can be obtained.  

4.4 The Potential Equation 

The column eigenvector 3X  (1.3) has a dual, row eigenvector form (upper indices for row-vectors, 

lower for column vectors) which is defined in terms of three, integer, ‘scale factors’  ,,  as 

  3X , (4.16) 

  ,, ℤ, )0,0,0(),,(  . 

and satisfies the following eigenvector equation, also for eigenvalue C, 

   3
3

3 XAX C  (4.17) 

Most importantly, the scale factors  ,,  relate to the coordinates zyx ,,  by the ‘divisibility 
relations’ 

 xPPC  )( 2  

 yQQC  )( 2  (4.18) 

 zRRC  )( 2  

Summing all three divisibility relations gives 

 zyxRRQQPPC   )(3 2  (4.19) 

and, by substituting for the kinetic energy K  (4.3) and using the DCE (4.6), this becomes the 
'potential equation': 

 VzyxC  22 , the potential equation. (4.20) 

Using the definitions of 3X  (1.3) and 3X  (4.16), this is written in eigenvector, inner product form 

as 

 VCzyx 
 2

3
3 2XX . (4.20b) 
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This is another conservation equation in URMT, and links all four sets of variables zyx ,, ,  RQP ,, , 

RQP ,,  and  ,,  to give another invariant 22C  to go with 2C  (the total energy per unit mass) in 
the DCE (4.6). 

Some physical justification for calling (4.20) a potential (energy) equation and, indeed, assigning the 
name potential in (4.4), can be seen by noting that the scale factors  ,,  are later physically 
associated with position coordinates, and the coordinates zyx ,,  as accelerations - or rather negative 
force per unit mass; see Section (4.9). With this in mind, by defining a gradient operator as 

 ),,(   , (4.21) 

then applying this to the potential equation (4.20), for constant C  (invariant by definition), gives 

 ),,( zyxV  , (4.22) 

and since zyx ,,  are associated with accelerations (negative), i.e. force per unit mass ( F ), then V  is 
consistent with the standard force/potential equation 

 ),,( zyxV F , force per unit mass. (4.23) 

Although the form of gradient operator (4.21) is not actually used further, the consistent derivation 
here of a force from a scalar potential provides some more substance to the rather abstract energy 
terms and physical associations mentioned above and used throughout. 

The scale factors  ,,  are actually the ‘duals’ of the coordinates zyx ,, , with the former forming 

the eigenvector 3X  (4.16), and the latter, the eigenvector 3X  (1.3), with their inner product (4.20b) 

forming an invariant, for a zero potential energy, as will be seen later (4.35). Being the duals of each 
other means that all equations in URMT are symmetric upon interchange of zyx ,,  and  ,, , see 
(4.18) for example. However, this does not mean the physical values are identical. Indeed, once a 
value for the coordinates (accelerations ~ force per unit mass) is specified, then the scale factors 
(positions) take on a completely different set of values, and any symmetry between the two is broken. 
An important consequence of this is that there is not an equivalent of the coordinate equation (1.0), for 

 ,, , i.e. if zyx ,,  satisfy (1.0), which they do by definition, then  ,,  do not. Nevertheless, 

one can reformulate URMT by starting with  ,,  in place of zyx ,,  in what is known as a dual 
‘frequency domain’ formulation. Although not yet detailed, the standard physical interpretation (SPI) 
of URMT, Section (4.9), as given in terms of  zyx ,, , is known as a ‘time-domain’ formulation, whilst 
the dual formulation is a ‘frequency-domain’ formulation. The time-domain aspects are given in 
Section (4.12), whilst the reader is referred to [7] for the full, time/frequency domain duality. 

4.5 A Global Pythagoras Variation 

Returning to the variational methods in Section (4.2), by setting the two, local variational parameters 
  and   to the value of   in the following way 

   ,   , (4.24) 

then the dynamical variables (4.8) now transform as follows: 
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 xPP  , yQQ  , zRR  , (4.25) 

 xPP  , yQQ  , zRR  , 

and substituting for these transformed dynamical variables into the DCE (4.6), collecting terms in   

and 2 , and equating to zero in accordance with the Invariance Principle, the following two 
expressions are obtained: 

  term: 

)()()(

0

RRzQQyPPx

C

QPPQ
z

C

PRRP
y

C

RQQR
x










 








 








 


. (4.26) 

 

 2 term : 






 








 








 


C

PP
yz

C

QQ
xz

C

RR
xyzyx 2220 . (4.27) 

The second, 2  term is noteworthy in that nowhere, so far, has a quadratic exponent been asserted, 

and this variation holds for all exponents 2n , not just 2n , yet from this nth order derivation the 
Pythagoras equation naturally emerges. One might hope that this is a big hint to the nature of FLT! 

4.6 Pythagoras Conditions 

It can be seen from the 2  term (4.27) that if the conjugate dynamical variables RQP ,,  are equated 

to their standard forms RQP ,,  as follows: 

 Pythagoras conditions  

 PP  , QQ  , RR  , (4.28) 

then (4.27) reduces to the Pythagoras equation, i.e. 

 2220 zyx  . (4.29) 

This means that the elements zyx ,,  of eigenvector 3X  also satisfy the Pythagoras equation. Whilst a 

quadratic, Pythagorean exponent 2n  has not been asserted, by enforcing the Pythagoras conditions 
(4.28) on the dynamical variables, if the coordinates satisfy Pythagoras (4.29) then they cannot 

simultaneously satisfy a higher order, 2n , form of the coordinate equation (1.0), and the k -value 
in (1.0) must therefore be zero in this case. 

Although not demonstrated here (see (4.44)), the scale factors  ,,  also satisfy Pythagoras, i.e. 

 2220   . (4.30) 

It was noted earlier above that, whilst  ,,  are duals of zyx ,, , they do not satisfy the coordinate 

equation (1.0). However, now we see that both zyx ,,  and  ,,  satisfy the same Pythagoras 
equation. Nevertheless, they do not simultaneously have the same value, i.e. they are not the same 
Pythagorean triples. 
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If the above was all there was to URMT then, whilst intriguing, it might remain a curio with not much 
real physics. However, armed with the Pythagoras conditions (4.28) and equations of quadratic degree, 
this is where most of the real URMT physics starts. 

4.7 An Invariant Zero Potential 

Applying the Pythagoras conditions (4.28) to the kinetic term K  (4.3) and potential term V  (4.4), 
they become 

 222 RQPK  , (4.31) 

 0V . (4.32) 

The Potential energy is thus zero and the DCE (4.6) is simply a constant energy, kinetic term: 

 KC 2 , the DCE, energy per unit mass, (4.33) 

and implies by (4.31) that the dynamical variables RQP ,,  satisfy the following hyperbolic 
conservation equation, which is, once again, a form of the DCE (4.6). 

 2222 RQPC  . (4.34) 

Note that given the energy is all kinetic, with zero potential energy, the URMT solutions are linked to 
those of a massless particle travelling at the speed of light, and hence a reason to link the eigenvalue C 
with the speed of light c. This physical link is revisited in more detail later, Section (6), when 
introducing mass into URMT. 

With 0V , and under Pythagoras conditions (4.28), the potential equation (4.20) reduces to 

 zyxC  22 , the potential equation. (4.35) 

The characteristic equation (4.5) also simplifies to 

  K 30 , 

and thus, using K  (4.33), there are three, symmetric eigenvalues 

 0,C . 

By applying the conditions (4.28) to the   term (4.26), another conservation equation is obtained, 
termed the 'Pythagoras delta equation': 

 xPzRyQ 0 , the Pythagoras delta equation. (4.36) 

In fact, all five conservation equations (4.29), (4.30), (4.34), (4.35)  and (4.36) are related to the inner 
products of the eigenvectors of the matrix 30A , (4.37) below, and there is also a sixth conservation 

equation that completes the set; see Section (4.10). 
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Under Pythagoras conditions, the matrix 3A  simplifies as follows, and is also relabelled 30A , where 

the extra subscript of zero denotes it is subject to these conditions: 

 

















0

0

0

30

PQ

PR

QR

A . (4.37) 

In pursuit of the conservation equations as vector inner products, all three eigenvectors are given next. 

4.8 The Pythagorean Eigenvectors 

Having already defined all the necessary variables, the Pythagorean eigenvectors are stated here 
without proof, as follows, the reader is referred to [2]#2 for full details: 

 

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
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
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




z
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x

3X , 
















R

Q

P

30X , 























3X , (4.38) 

   3330 XXA C , 030 AX ,   3330 XXA C . 

The reciprocal, row-eigenvectors 3X , 30X  and 3X  are defined by the following eigenvector 
equations: 

   3
30

3 XAX C , 030
30 AX ,   3

30
3 XAX C , 

and obtained from their standard counterparts using the following ' T  operator' and relations 

 






















100

010

001
3

3 TT , the URM3 T  operator (4.39) 

  T
  3

33 XTX ,  T30
330 XTX  ,  T

  3
33 XTX , (4.40) 

which gives 

  3X ,  RQP 30X ,  zyx 3X . (4.41) 

Of most note here is the T operator (4.39) that, to within sign convention, is identical in form to the 
Minkowski metric of Special Relativity [10], albeit for two spatial dimensions and one time-
dimension, known in the literature as a ‘2+1’ relativistic formulation. In fact, in URM3, this is a single 
spatial dimension, e.g. the x axis, with the observer (laboratory) measured time t and proper time   
[11] occupying the other two time dimensions. Whilst this may seem a URMT limitation (one less 
spatial dimension), it typifies URMT’s mathematical treatment of physics whereby URMT adds one 
extra dimension to the classical treatment – the physical reality is thus one-dimension down from the 
mathematical formulation. Specifically, with respect to relativity, the full four-dimensional (three-
spatial, one temporal) variant is embodied in the 5x5 matrix incarnation of URMT known as ‘URM5’. 
In fact, URMT adds this extra dimension because it also adds in the relativistic proper time   in 
addition to the laboratory time t. All this is illustrated starting in Section (5). 
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4.9 Standard Physical Interpretation 

Before proceeding further, it is worth formally stating the standard physical interpretation (SPI) of all 
URMT variables, eigenvectors and matrices as given in the table below. 

(4.42) 

Quantity Physical Dimensions Physical Interpretation 

3X , 3X , zyx ,,  2LT  acceleration or force per unit mass 

3A , 30A , 30X , 30X , 

RQP ,, , RQP ,, , C  

1LT  velocity or momentum per unit mass 

3X , 3X ,  ,  ,   L  position 

  , 3t  T  time 

K , V , 2C  22 TL  velocity squared or total energy E  

( 2CE  ) per unit mass 

Note that the physical units of all reciprocal vectors, 3X  etc. can be determined from the 
dimensionless T  operator relations (4.40) using the above units for the standard forms. 

This is not actually the only physical interpretation, and a modified ‘Quantum Physical Interpretation 
(QPI) is given later when considering URMT and its relation to quantum mechanics (QM). Whilst two 
physical interpretations may seem one too many, this is not dissimilar to modern theoretical physics 
whereby, whilst the phenomenology may be different, the underlying mathematics is the same, e.g. 
forces and symmetry groups – as in the case of three seemingly disparate forces, all mathematically 
linked by unitary symmetry, specifically the groups U(1) for electromagnetism, SU(2) for the weak 
force and SU(3) for the strong force [9]. In both URMT and QM this means the inner products 
between the eigenvectors remain invariant under a unitary transformation – in URMT [7] this unitary 
transformation is none other than that expressed in the Invariance Principle (4.15). 

4.10 Conservation Equations and Invariants 

The six key conservation equations of URMT (the first five have already been given earlier), as 
obtained from the inner product relations between the eigenvectors and their reciprocals, are given 
here for URM3. Note that the complete set of conservation equations is only valid under URMT 
Pythagoras conditions (4.28): 

 0222
3

3 
 zyxXX  Pythagoras (zero norm), (4.43) 

 0222
3

3 
 XX  Pythagoras (zero norm), (4.44) 

 2222
30

30 CRQP XX  the DCE, (4.45) 

 
2

3
3

3
3 2Czyx  




 XXXX , the potential equation for 0V , (4.32) (4.46) 

 030
3

3
30  

 zRyQxPXXXX , the delta equation, (4.47) 

 030
3

3
30  

 RQP XXXX , the dual delta equation. (4.48) 
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Equations (4.43) and (4.44) are simply Pythagoras, and the eigenvectors  3X  and 3X  are referred to 

as having a ‘zero norm’, where the norm X  of a vector X  is defined in URMT as the inner product 

of a column vector with its reciprocal row vector (4.40), i.e.  

 03
32

3  


 XXX  (4.49) 

 03
32

3  


 XXX . 

On the other hand, the magnitude of 3X  and 3X  is non-zero ( 22C ) but constant, as given by (4.46), 

likewise for 30X  (4.45), which has a magnitude therefore of 2C  (4.45). 

Notice the complete duality between zyx ,,  and  ,,  in these inner products - the two sets of 
variables are completely interchangeable, whilst keeping in mind that they don’t generally have the 
same value, and neither are they physically interpreted as the same quantity, with zyx ,,  accelerations 

(force per unit mass), and  ,,  positions. In fact, under the SPI (4.42), the zyx ,,  are related to 

 ,,  by time, as shall shortly be seen in Section (4.12), when time-domain eigenvector evolution is 

discussed. Conversely, the  ,,  are related to the zyx ,,  by frequency. Beforehand exploring the 
domain evolution, the parametric solution for the eigenvectors is required, in which a single, 
evolutionary parameter, namely time, is key. 

4.11 The Parametric Solution 

The URM3 eigenvector problem, under Pythagoras conditions (4.28), is a completely solved problem, 
with the coordinates zyx ,,  given by the standard parameterisation for two integers k  and l  

 lk , ℤ, )0,0(),( lk , 1),gcd( lk , (4.50) 

 klx 2 , )( 22 kly  , )( 22 klz  . (4.51) 

The dynamical variables RQP ,,  and scale factors  ,,  are obtained in terms of both integers k  

and l , and two new integers s  and u , which are actually solutions to the following linear 
Diophantine equation [12]: 

 luksC  , us, ℤ. (4.52) 

This equation always has a solution since 1),gcd( lk  (4.50) and, once a particular solution s  and 

u  is obtained by algorithmic means [12], then an infinite family of solutions can be generated, 
denoted here by integers s  and u , and parameterised by another arbitrary integer 3t  (soon to be 

associated with time) as follows: 

 ltss 3 , ktuu 3 , 

 3t ℤ,  us , ℤ, )0,0,0(),,( 3  tus . (4.53) 

With a solution for s  and u  obtained, then the dynamical variables and scale factors are given by 

 )( luksP  , )( kulsQ  , )( kulsR  , (4.54) 
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 su2 , )( 22 su  , )( 22 su  . (4.55)  

4.12  Eigenvector Time-domain Evolution and Calculus 

By substituting the parametric solution for RQP ,,  (4.54) and  ,,  (4.55) into the eigenvectors 
(4.38), the following eigenvector evolution equations can be obtained, where the initial values at time 
zero, 03 t , are superscripted with a prime, i.e. )0( 333   tXX  etc. 

   33 XX , static, no 3t  dependence, (4.56) 

 3033330 )( XXX  tt , (4.57) 

   33033
2
333 2)( XXXX ttt , (4.58) 

It can be seen from these that two of the three eigenvectors, 30X  and 3X , evolve with 3t  and, in fact, 

this parameter 3t  is also identical to the negative of the global variation parameter   in (4.25), i.e. 

3t , hence the SPI (4.42) classifies   as a temporal parameter. 

Since 30A  (4.37) and 30X  (4.38) are both functions of RQP ,, , and 3X  (4.38) is a function of 

zyx ,,  then, by defining the ‘plus’ (or ‘raising’) matrix A  in terms of zyx ,,  by 
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0

0

xy
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yz

A , (4.59) 

the matrix 30A  itself evolves with a similar equation to 30X  (4.57), i.e. 

 303330 AAA  t . (4.60) 

This equation is effectively a matrix algebra form of the Invariance Principle (4.15), and will be of 
importance shortly when relating URMT to QM. 

Note that the justification for call 3A  a ‘raising’ operator, as used in QM [8], is because it, 30A  and 

another URMT matrix 3A  (a function of  ,,  not elaborated herein, see [2]#5), satisfy the exact 

same relations, including ‘commutator’ relations’, as those in used QM. Likewise, the matrix 3A  is a 

‘lowering’ operator in URMT - see [7] for more details on their properties with regard to QM. 

Perhaps, most importantly, it can be seen that by taking the time derivative of the three eigenvectors, 
(4.56) to (4.58), they can be seen to relate to each other by calculus relations, also consistent with their 
physical interpretations (4.42) as position ( 3X ) velocity ( 30X ) and acceleration ( 3X ), to within a 

scale factor, i.e. 

30
3

3 2X
X



dt

d
, derivative of position  30X ,  velocity (4.61) 



An Overview of Unity Root Matrix Theory 2018 

Page 19 of 39 
Draft F 06/03/2018 

R J Miller, http://www.urmt.org 

 3
3

30 X
X

dt

d
, derivative of velocity  3X  acceleration, (4.62) 

0
3

3 

dt

dX
, derivative of acceleration = zero (constant acceleration). (4.63) 

Indeed, making the following, exact associations between a general position vector r, velocity vector 
v, and acceleration vector a: 

  3Xa , constant acceleration, 
dt

dv
a  (4.64) 

 30Xv  , velocity, 
dt

dr
v  (4.65) 

 
2
3

X
r , position. (4.66) 

then the evolution equation (4.58) for 3X  becomes the familiar Newtonian equation for the position 

of a particle under constant acceleration, i.e. 

   3303

2

2
XXXr t

t
 rva  tt 2

2

1
, (4.67) 

where the superscript prime represents the initial value. 

It should be noted that URMT is a discrete theory and so, technically, one should use discrete 
differences in 3t , and infinitesimals, such as 3dt  in the above derivatives, are really finite differences 

3t  with a minimum non-zero difference of unity. However, time 3t  is considered to have a smallest 

unit of at least the Planck time (~ 4410 s) and for any finite time, even of the order 2010 s, the standard 
calculus derivative 3/ dtd  is a good, large 3t  approximation for such discrete differences, and the 

derivative relations above are thus very close to their continuous, real-valued equivalents. 

Of course, this is all, so far, very classical, i.e. Newtonian, but higher-dimensional extensions extend to 
Special Relativity and, equally importantly, the evolution equations, as re-written in an exponential 
form (next), highlights a clear link to QM. 

Exponentiated Evolution 

An eigenvector matrix ][X  is defined as a row vector of the three, column eigenvectors 

 3303 ,, XXX , i.e. 

   3303][ XXXX , (4.68) 

with the initial value at 0t  ( 3~ tt ) denoted by a superscript prime, as in 

    3303][ XXXX , 0t , 3~ tt  (4.69) 

then an exponentiated evolution matrix tE  is defined in terms of URMT’s plus matrix 3A  (4.59), for 

time t, eigenvalue C, by 



An Overview of Unity Root Matrix Theory 2018 

Page 20 of 39 
Draft F 06/03/2018 

R J Miller, http://www.urmt.org 

 





 

C
tt

3exp
A

E , (4.70) 

where 3A  is invariant (time-independent) by the definition of its constituents zyx ,,  and eigenvector 

3X  (4.56). With I  denoting the 3x3 identity matrix, then this expression expands as per a standard 

exponential series in terms of multiplicative powers of the matrix 3A , i.e. 
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
 

C
t 3exp

A  
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
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

n

n C

t

C

t
2

33

!2

1
lim

AA
I

n

C

t

n

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
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 3

!

1
...

A
, (4.71) 

Using this evolution matrix tE , then the initial eigenvector matrix ][ X  evolves according to the 

matrix product 

 ][][  XEX tt . (4.72) 

A key feature in URMT is that the series expansion (4.71) is finite and, in fact, terminates at the 
second order term because 3A  has the following property that it is zero for cubic and higher order 

powers, i.e. 

 03 
nA , 3n , (4.73) 

and so the evolution matrix tE  series expansion thus reduces to just 

 tE
2

33

2

1













 

C

t

C

t AA
I . (4.74) 

Time-domain Evolution and the Wave Function 

With URMT evolution now written in an exponential, unitary form, it is intriguing to look at a very 
similar equation in QM. 

For a time-independent Hamiltonian H, the wavefunction at time t, denoted by )(t , is given in terms 

of its initial wavefunction, time 0t , according to  

 )0()exp()( 
h

itt
H

  (4.75) 

Given the wavefunction is a state vector, then by comparing this with URMT’s own time-domain 
eigenvector evolution (4.72) the following associations are made between QM and URMT: 

 ~)(t t][X , ~)0( ][ X , 
Ch

i  3~
AH

. (4.76) 

The Hamiltonian H is time-independent, by definition, and so too the URMT raising operator 3A . 

The scaled Planck constant h  is, of course, also constant by definition, and so too the URMT invariant 
eigenvalue C. From the last term above, the following associations are thus made 
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  3AHi  (4.76b) 

 Ch   (4.76c) 

Thus, eigenvalue C can now be directly equated to Planck’s constant. Indeed, this is independently 

verified in [7] where the association of h  with C is made in connection with quantised angular 
momentum and spin. 

This comparison is quite remarkable given that URMT’s time-domain evolution is really a 
consequence of the Invariance Principle (4.15), which is pure number theory and just an esoteric 
statement that, due to the congruence relations (4.1), there is an infinite set of solutions parameterised 
by a numeric parameter, ascribed to time here for time-domain evolution. 

4.13 Quantum Physical Interpretation 

The SPI can be considered a Newtonian-like physical interpretation in so far as it traditionally talks in 
terms of kinematic quantities such as acceleration and velocity. However, the above comparison of 
URMT’s time-domain evolution gives an alternative Quantum Physical Interpretation (QPI) where the 
units of C are now those of Planck’s constant, and the units of 3A  are those (per unit mass) of the 

Hamiltonian (energy) i.e. 

  )(Aunits 22)(  TLJunits H , QPI energy, per unit mass (4.77a) 

 )(Cunits 12)(  TLJThunits , QPI action (see below), per unit mass (4.77b) 

with the ratios C/3A  and h/H  possessing the units of frequency. 

This newer QPI is really just a slight adjustment to the more established SPI, Section (4.9), which 
primarily speaks in terms energy-related quantities rather than action quantities, as discussed shortly. 
The ‘slight adjustment’ is actually a multiplication of the equivalent SPI physical dimensions by length 

‘L’, and, because the comparison of C/3A  with h/H  is a ratio, the multiplication of both the 

numerator and denominator by the same physical dimension of length cancels so that both the SPI and 
QPI give the same units for these ratios, i.e. frequency or reciprocal time. 

The QPI is actually put on a much firmer basis in [7] with the URMT representation of Quark Flavour, 
i.e. how to mathematically represent the six quark flavour states (up, down, strange, charm, bottom 
and top) as eigenvectors in URMT. In particular, the matrices of URMT (there are actually nine unique 
matrices as opposed to the two matrices 30A  and 3A  detailed so far) are related to the symmetry 

groups SU(N) [9] via their mathematical commutation relations [3].  

A strong reason to use this new QPI is that the units of Planck’s constant are those of the dynamical 
quantity known as action, and this leads to a subsequent reinterpretation of URMT’s Invariance 
Principle in terms of action quantities. The reasoning behind this is as follows: 

Given the units of C are those of an action quantity, then so too are those of 30A  since C and 30A  

both have the same units as can be deduced from   3330 XXA C  (4.38). In addition, since the units 

of 3A  are now those of energy (4.77), then the quantity At  is also that of an action quantity, and so 

the algebraic form of the Invariance Principle, i.e. 303330 AAA  t  (4.60), is thus a statement on 

an action quantity, albeit the principle is not per se a ‘principle of least action’, but more just a 
statement on the behaviour of the dynamical, eigenvector equations   3330 XXA C  (4.38) under a 
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change ‘  3At ’ in action 30A  as per (4.60). Looking at the equivalent transformations in the 

dynamical variables RQP ,,  (4.25) for 3t , the principle states that the 3X  eigenvector solution 

(4.13) (under Pythagoras conditions (4.28)), comprising coordinates x,y,z (4.38) is invariant to a time-
domain change in the action of the dynamical variables. 

Most importantly, although not shown, the inner product relations between the URMT eigenvectors, 
Section (4.10), remain invariant to time-domain evolution, just like unitary transformations on the 
eigenvector wave functions in QM preserve their inner products, and thus URMT transformations are 
effectively unitary, but do not explicitly possess the complex-valued nature of QM and its associated 
‘Hilbert Space’ of wavefunctions. 

Lastly, although also not shown, see [7], with the three quark particles (up, down and strange) 
represented by URMT eigenvectors ( 3X , 3X  and 30X  respectively) the corresponding anti-particles 

(anti-up, anti-down, anti-strange) are represented by the reciprocal vectors ( 3X , 3X  and 30X  
respectively), which evolve in a time-reversed manner as follows. By denoting the ‘conjugate’ matrix 

][X  as a column vector of the URMT reciprocal row eigenvectors, i.e. 

 





















3

30

3

][

X

X

X

X , (4.78) 

and defining the conjugate (time-reversed) eigenvector evolution matrix tE  as the inverse of tE  

(4.70), i.e. 

 1 tt EE 





 

C
t 3exp

A
, (4.79) 

then the reciprocal eigenvectors (rows of ][X )  evolve according to 

 t][X tEX][  . (4.79) 

By evaluating the series (4.74) for negative time, and expanding (4.78) in terms of the initial reciprocal 
eigenvectors (4.69), then the reciprocal eigenvectors evolve according to 

   33 XX , static, no 3t  dependence, 

 303
33

30 )( XXX  tt , (4.80) 

   330
3

32
33

3 2)( XXXX ttt ,  

These same equations can actually be obtained using the standard T operator relations (4.40), i.e. 

  T][][ XTX  . (4.81) 

Notice now that it is 3X  that is invariant and 3X  evolves with time. 
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Lastly, whilst the above alluded to a three-quark (up, down and strange) quark representation, URMT 
actually provides a full, six-quark representation (adding the charm, bottom and top quarks) in its 6x6 
incarnation ‘URM6’ [7]. 

4.14 Geometric and Physical Aspects 

So far, all URMT’s properties have been algebraically expressed, but the eigenvector solution also 
possesses some interesting geometric properties, as now described. 

The two eigenvectors X  and X , for the two, non-zero eigenvalues C , are Pythagorean, i.e. they 
satisfy the Pythagoras equation (4.29) and (4.30), and have zero norm (4.49). Because they satisfy 
Pythagoras, they each form a 2D, discrete cone in 3D, ultimately parameterised by three integers k , l  
(4.50) and 3t  (4.53), where the third parameter 3t  is temporal. The set of all points covered by these 

parameters represents an infinite set of eigenvectors, and is denoted by the two cone sets UC  and LC  

for X  and X  respectively. For each point in UC , i.e. fixed X , the position eigenvector X  

evolves with time 3t . For large 3t , see (4.58), it changes by multiples of X  and, given both it and 

X  are Pythagorean, with a zero norm (4.49), it effectively traces a null trajectory in the cone LC . 

Furthermore, this trajectory has inverse square law curvature with respect to time 3t  [2]#3, Since it is 

also at a zero, constant potential at every point (4.32), there are no forces acting in the direction of 

motion and it therefore possesses a constant kinetic energy (per unit mass) of 2C . It is thus physically 
interpreted as the null (zero norm), geodesic trajectory of a massless particle (with C  equated to the 
speed of light c) in free-fall. 

Because X  and X  can never be zero, due to the non-zero value of eigenvalue C  (4.0), the cones 

UC  and LC  actually have no tip, i.e. there is no point (0,0,0), and this is termed 'no-singularity' in 

URMT for obvious reasons. 

As regards the zero eigenvector 0X , it represents a velocity (4.42), and its solution space forms a 2D, 

discrete hyperbolic sheet in 3D, denoted by the infinite set of points H  [2]#3. The discrete hyperbolic 
sheet is the DCE, i.e. the conservation equation (4.45) in 0X , where the elements of 0X  are the 

dynamical variables RQP ,, . Like X , 0X  also evolves with time 3t . 

Taken together, the union of the sets LC , UC  and H  forms the discrete lattice L , which represents 

the complete URM3 eigenvector solution. As time 3t  progresses, the discrete hyperbolic sheet of 0X  

converges (asymptotically) on to the cone LC , both of which align anti-parallel to UC , and the 

solution is said to 'flatten' [2]#3. At every point in the lattice, the conservation equations, Section 

(4.10), i.e. inner products between the eigenvectors, give the same set of invariants, }2,,0{ 22 CC  , 

and for unity eigenvalue this is just }2,1,0{  , i.e. the most basic units possible. Note that the 

negative values can be achieved by reversing the sign of the T  operator (4.39) without detriment to 
the eigenvectors (4.41). These integer invariants hint at a fundamental quantisation of conserved 
quantities such as charge, spin etc. 

5 The Special Relativity Doppler Solution 

The first tentative links to Special Relativity were briefly alluded to earlier in Section (4.8) when 
discussing the Minkowski form of the URM3 T operator (4.39). 
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Consider a particle moving along the z-axis, with velocity v, i.e. 

 
dt

dz
v   or vtz  , (5.0) 

then, in URM3, the vector 3X  representing its position x at time t, proper time  , i.e. an STR event 

in one spatial, one time dimension ),( ctx , is given by 

 









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








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ct

z

c

3X , (5.1) 

where   and t  are related by the usual STR definitions: 

 t , 
  2/1

1

cv
 , 1 , cv  . (5.2) 

The signage of the elements of 3X  (5.1) is intentional and derives from algebraic convenience when 

solving URMT’s five-dimensional, ‘URM5’ eigenvector solution. 

Note that neither z nor  , in the above, are the same as those defined earlier. Symbol z usually denotes 

the third element of 3X  (4.38), and therefore an acceleration under the SPI (4.42), whilst   is usually 

the third element of 3X   (4.38). To reiterate, z here is now a position coordinate and   is the dilation 

factor in Special Relativity [11]. Suffice to say, symbol notation is largely historical in URMT and the 
reader is requested to temporarily accept the change of notation used here in this section on Relativity. 

According to the relation  T
  3

3 TXX  (4.40) then, using (5.1), the reciprocal vector 3X  is given 

by 

  ctzc3X , (5.3) 

and thus the conservation equation (4.43) becomes 

 0)()( 222
3

3 
 ctzcXX . (5.4) 

Using vtz   and rearranging gives 

 2
22

2
2

)(


vc

c
t


 . (5.6) 

From the definition of   (5.2) it is seen here that the lab time and proper time are related by t , 
also as per (5.2). Thus, URM3 gives a consistent representation of a single-axis STR event in terms of 
its eigenvector 3X  under Pythagoras conditions, Section (4.6). However, this is just a taster and, most 

importantly, URMT develops a relativistic, five-dimensional eigenvector solution with three spatial 
dimensions plus the two aforementioned temporal dimensions, summarised as follows, see [13] for full 
details. 
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The five-dimensional representation of a four-vector, STR event ),,,( ctzyx  [11] is given by the 

URM5 vector 5X  
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5X . (5.7) 

The reciprocal, row eigenvector 5X  is defined in the usual URMT way (4.40) by 

 T)( 5
55


  XTX , (5.8) 

where the 55  URM5 matrix operator 5T  is defined in block matrix form using the 44  identity 
matrix 4I  as follows 

 










10

045 I
T  (5.9) 

so that 5X  becomes, according to (5.8), 

  ctzyxc5X . (5.10) 

Once again, the 5X  vector has a zero norm in accordance with an invariant, non-zero, STR interval 

c , i.e. 

 05
52

5  


 XXX . (5.11) 

which expands to 

 0)()( 22222  ctzyxc , (5.12) 

For the purposes of the result that follows, it is only necessary to consider motion in one-dimension 
along the z-axis, as per the three-dimensional eigenvector 3X  (5.1), and 5X  becomes 
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By defining the ‘Doppler’ parameter   as 
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vc , (5.14) 

then the URM5 eigenvector solution 5X  (5.13) is given by 
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Although not derived herein, see [13], the full, five-dimensional URM5 eigenvector solution is very 
similar to that of URM3 (by design) with a ‘plus’ acceleration vector 5X  and a ‘zero’ velocity vector 

C50X  reproduced below from [13] as follows: 
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The eigenvalues are 0,0,0,C , i.e. two non-zero eigenvalues C , and three zero eigenvalues, 

with 5X  the eigenvector for C , 5X  the eigenvector for C , and three ‘zero’ eigenvectors 

A50X , B50X  and C50X  for the three zero eigenvalues (only C50X  is shown above). 

Note that the 5x5 matrix 50A , for which these are eigenvectors, is given later (6.1) in a slightly more 

general form. 

Of most interest here is actually the above, invariant acceleration vector 5X , which is seen to be 

inversely proportional to the time t . With the two spatial coordinates x  and y  zero (second and third 

elements of 5X ), then the non-zero acceleration a  is given by the fourth element, i.e. 

 
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 
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2

2 1




t

c
a . (5.17) 

From this expression, for speeds close to the speed of light, when   is very large, then the 
acceleration a  is approximated as 

 
t

c
a  , 1 , (5.18) 

which is just the Hubble-equivalent, expansion acceleration. Evidently, if 0t , the solution blows up 
(quite literally) with a singularity. Given the age of the universe is approximately 14 billion years, i.e. 
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)10( 10O  years, which equates to about 1710  seconds, and with smc /103 8 , then the acceleration 
in this epoch is approximately 

 )10( 9 Oa 2ms , URMT acceleration, (5.19) 

which is the acceleration equivalent of the Hubble constant MpcmsH /104.28.73 13  (or 

mms /104.2 118  ), where mMpc 2210086.31  . This derives as follows: at distance r, the 

recession velocity is given by the Hubble law as Hrv  , and differentiating this gives the 
acceleration rHva   . Using rv   this becomes Hva  . For velocities near the speed of light 

Hcva    for cv  . Substituting for mmsH /104.2 118   and 18100.3  msc  gives 
210102.7  msa . 

The above gives the acceleration in the current epoch. However, at the very earliest, non-zero time, 

such as the Planck time sOt )10( 44 , then the acceleration is a huge 250 )10( msO . 

6 The Special Relativity Mass Solution 

6.1 Introduction 

The above Doppler solution actually derives from the eigenvectors to the following URM5, 5x5 
matrix: 
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. (6.1) 

The characteristic equation for this matrix, i.e. the 5-dimensional equivalent of the Dynamical 
Conservation Equation (4.5), is 

 ))((0 2222 MC   , (6.2) 

and the eigenvalues are thus 

 0,, iMC  . (6.3) 

It is noted that if M  is zero then the eigenvalues reduce to 0,0,0,C , which is the key 
simplification made to obtain the Doppler solution, given in the previous section. However, here, the 
dynamical variable M will not be assumed zero, and this is because it is related to mass and the 
potential term V in the DCE (4.6). What this means, therefore, is that for zero M, and/or a zero V, the 
earlier Doppler solution and all prior URM3, 3-dimensional Pythagorean solutions, with a naturally 
occurring zero potential energy, are considered to represent massless particle solutions, i.e. URMT 
has, so far, provided solutions for the photon or graviton particles. The mathematical justification for 
linking M with mass, and simultaneously also the potential V, is given next. 

The eigenvalue equation is factored as follows, disregarding (or factoring) the eigenvalue   for the 
zero eigenvalue: 

 222224 )( CMMC   . (6.4) 
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Defining the kinetic term as 

 22 MCK  . (6.5) 

and the potential V  term as 

 2MV  . (6.6) 

then (5.10) becomes 

 224 VCK   . (6.7) 

This is a quartic with quadratic and squared quadratic terms only and will, very shortly, be related to 
the relativistic energy momentum equation. Beforehand, for eigenvalues C , the characteristic 
equation (6.7) now becomes 

 224 VCKCC  , C  (6.8) 

and dividing throughout by 2C , which is always greater than zero by (4.0), returns the familiar DCE: 

 VKC 2 . (6.9) 

and justifies the revised kinetic and potential definitions, (6.5) and (6.6) respectively. 

The non-zero, dynamical variable M in 50A  is very important in URMT due to its association with a 

non-zero rest mass and, in keeping with Relativity, it therefore possesses a sub-luminal speed and is 
known as the ‘reduced velocity’, Appendix (B), since it can actually be interpreted as a velocity down 
from the speed of light, instead of growing from 0 to just below the speed of light. 

Note that M  itself is actually a velocity quantity, and not a mass. In fact, it is more useful to think of it 
as a momentum per unit mass. The reduced velocity is also expanded upon further in Appendix (B), 
but attention now turns to comparing the DCE (6.7) with the relativistic energy-momentum. 

6.2 The Relativistic Energy-momentum Equation 

Throughout URMT, starting right at the beginning with URM3 [2], and extending to URM4 and 
URM5 in [14], the characteristic equation, i.e. the DCE, is considered an energy conservation equation 

(per unit mass), with a total energy given by the invariant eigenvalue 2C . The eigenvalue C  is 
inevitably associated with the speed of light c  (4.7b) hence the familiar look to the relativistic energy 

formula 22 cCKE   (per unit mass) for a zero potential, i.e. 0V  in (4.7). Much of URMT, 
particularly in [14], concentrates on zero potential energy solutions and, as such, all the energy is 
kinetic. In essence, all very much like a particle with a zero rest mass but, nevertheless, finite energy 

2C  (per unit mass). This is why, repeatedly, the invariant, zero potential solution, Section (4.7), is 
considered primarily a massless particle solution, i.e. a photon or graviton. The introduction of a non-
zero dynamical variable M  now changes all that. 

Returning to the characteristic equation (6.8), it is noted to be fourth order in C . Furthermore, given it 
splits nicely into two terms, i.e. a kinetic and potential term, it can be directly compared with the STR 
relativistic energy-momentum equation 

 
2

0
222 EcpE  , (6.10) 
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where, as usual, p  is the momentum of an object (particle) with relativistic mass m  and velocity v , 

i.e. mvp  , and the total energy E  is given by Einstein's equation: 

 2mcE  , (6.11) 

with the rest mass ( 0m ) energy 0E  given by: 

 2
00 cmE  . (6.12) 

Expanding (6.10) in component form gives 

 22
0

2222 )()()( cmcmvmc  , (6.13) 

and dividing throughout by the squared mass 2m  gives 

 4

2

0224 c
m

m
cvc 






 . (6.14) 

Comparing this with the characteristic equation (6.8) gives the following associations of the energy 
terms, all, strictly speaking, per unit mass: 

 22 cCE  , per unit mass, 

 222 vMCK  , ditto, 

 2

2

02 c
m

m
MV 






 , ditto. (6.15) 

From STR [11], the ratio of masses mm0  is equal to the reciprocal of   (5.2), i.e. 

 
m

m01



, (6.16a) 

and by substituting this ratio into the potential term (6.15), the dynamical variable M  is seen to be 
related to the eigenvalue (now also the speed of light) by 

 MC  , (6.16b) 

which is actually its original definition as a ‘reduced velocity’, see Appendix (B). 

6.3 The URMT Rest-mass Energy Equation 

Lastly, and most importantly, using MC   (6.16b) and cC   (4.7b), then the rest mass energy 0E  

(6.12), becomes 

 MCmE 00  , (6.17) 
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and since 0mm   by (6.16a) then the rest mass energy can be written in terms of the URMT 

dynamical variable M  and eigenvalue C  as 

 mMCE 0 , URMT's rest mass energy equation. (6.18) 

Superficially, this is just a rewrite of 2
00 cmE  , with the rest mass term cm0   effectively replaced 

by mM , but what was the STR set { 0m , m , v , c }, of two masses and two velocities, is now replaced 

by a single mass and three velocities, { 0m , M , v ,C }, where the single, relativistic mass m  now 

cancels across the energy-momentum equation (6.13) such that URMT's equivalent equation becomes 
the Pythagorean relation given earlier (5.4), rearranged and written in terms of the eigenvalue C  as 

 222 vMC  , URMT's energy-momentum equation. (6.19) 

Whilst it may be argued that both (6.18) and (6.19) are just rewrites of STR's equivalent energy 
equations, the reader is reminded that the URMT, invariant eigenvalue C  originates from URM3 and 
a number-theoretic problem in linear algebra. Furthermore, both energy equations, (6.18) and (6.19) 
are now symmetric, to within a sign, upon interchange of the velocities, i.e. M  and C  in 

mMCE 0 , and M , v  and C  in 222 vMC  . In particular, this now puts the abstract, reduced 

velocity M  on an equal footing with the familiar, laboratory velocity v . The addition of M  is 
seemingly just an extension of the URM5 Doppler solution, yet it appears directly related to rest mass 
and also the potential energy (6.6). 

It would seem, therefore, that by starting bottom-up with a problem in number theory, i.e. obtaining 
the integer eigenvalues and eigenvalues of the matrix 50A  (6.1) according to an invariance principle, 

Section (4.3), the STR energy equations can be derived. Indeed, although not shown here, URMT can 
also relate a unity root matrix to both an event and its Lorentz transform [13]. 

7 Higher Dimensional Compactification 

With URM3 representing a three dimensional theory, the higher-dimensional extensions to a four and 
five dimensional representation are given by URM4 and URM5, using 4x4 and 5x5 matrices 
respectively – an example of URM5 is given by the Doppler solution in Section (5). These higher 
dimensions can be shown to compactify, i.e. become small with respect to the first three dimensions 
by parametric variation. Here, under the SPI, this parametric variation is simply the passage of time as 
represented by the temporal parameters 4t  and 5t , one per dimension (fourth and fifth), as 

demonstrated next. 

The matrix 50A  (5.5), for zero M, is actually a variant of the following, more general matrix, where 4t  

and 5t  are arbitrary temporal parameters for the fourth and fifth dimensions, analogous to the URM3 

parametric time 3t  for the third dimension (4.53): 

 



























303435
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X

X

A

tt

t

t

 (7.1) 

 4t , 5t ℤ , Tttunits ),( 54 , time (7.1b) 



An Overview of Unity Root Matrix Theory 2018 

Page 31 of 39 
Draft F 06/03/2018 

R J Miller, http://www.urmt.org 

Comparison with 50A  (5.5) shows that the Doppler solution assigns 4t  and 5t  to scaled forms of the 

familiar laboratory time t  and proper time  , i.e. 52t , 42tt   but this is largely 

inconsequential here and 4t  and 5t  are just arbitrary temporal parameters that are not necessarily the 

relativistic times t  and  . 

In fact, for the purposes of illustrating geometric compactification, it is the more general solution for 
the five-dimensional, ‘position’ vector 5X  that is of most interest, and is given below in terms of the 

URM3 eigenvectors, 

 























3
2
4

2
53

4

5

5

)(

2

2

XX

X

tt

Ct

Ct

. (7.2) 

The first two elements 42Ct  and 52Ct  represent the position in the fourth and fifth spatial 

dimensions, and the position in the first three dimensions is given in terms of the URM3 eigenvector 

solution by the vector   3
2
4

2
53 )( XX tt . 

Denoting this position vector by the five spatial coordinates 1x  to 5x , i.e.  

 ),,,,( 543215 xxxxxX , (7.3) 

then the individual coordinates are 

   3
2
4

2
53321 )(),,( XX ttxxx , (7.4) 

 44 2Ctx  , (7.5) 

 55 2Ctx  , (7.6) 

It is easily seen from the above that the fourth and fifth dimensions are linear functions of time, whilst 
the first three dimensions are quadratic. Thus, as either of the times 4t  and/or 5t  grow large, the first 

three dimensions dominate the eigenvector solution and actually align with the URM3 ‘acceleration’ 
vector 3X , i.e. 

 























3
2
4

2
5

5

)(

0

0

X

X

tt

, 04 t , 05 t . (7.7) 

In other words, for large times, 4t  and 5t ,  the fourth and fifth dimension shrink (compactify) with 

respect to the first three dimensions hence URMT exhibits the geometric property of compactification 
of its multi-dimensional, discrete eigenvector solution. 

Note that the eigenvector 3X  itself is Pythagorean throughout most of this paper, and is therefore 

strictly two-dimensional in so far as its solution space is a ‘surface’ or, more accurately, a set of points 
lying on a discrete conical surface as given by the upper cone UC , Section (4.14). This discrete 

surface is parameterised by integers k and l in the parametric solution (4.51), hence a two-dimensional 
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surface. Nevertheless, the complete eigenvector solution is three-dimensional, since the extra 
parameter is, in fact, the temporal parameter 3t  in (4.53). However, it is actually URM4, i.e. a ‘four-

dimensional’ solution that can only truly represent three-dimensional, arbitrary vectors in URMT, 
under the methods of ‘Arbitrary Vector Embedding’ - see [13] and [15]. And, as per the Doppler 
solution, a four-dimensional relativistic event is treated under the five-dimensional scheme that is 
URM5 [13]. In brief, URMT solutions add an extra dimension to the physical problem and essentially 
then projects down to the ‘surface’ that is one dimension less, i.e the physics is mathematically 
formulated one dimension higher than the physical manifestation. 

8 Summary 

URMT originates from the pure mathematical branch of number theory and Diophantine equations 
(integer equations), with a modified variant of the FLT equation, modified such that it gives an infinite 
set of solutions, each an eigenvector to a unity root matrix, i.e. a matrix whose elements are unity (or 
primitive roots), for a unity eigenvalue. The non-singular condition on the unity root matrix leads to 
the characteristic eigenvalue equation, interpreted as an energy conservation equation, akin to a 
Hamiltonian. Indeed, upon extension to higher dimensions, it is seen to be equivalent to the relativistic 
energy-momentum equation, with the invariant, unity eigenvalue none other than the speed of light. 

The energy conservation equation is then be solved by variational methods to give both the dynamical 
equations (the eigenvector equations) and their solution, i.e. the eigenvectors, that are given in terms of 
the elements of the matrix (the unity roots), also interpreted as rate quantities, e.g. velocities, and 
consequently relabelled as dynamical variables.  

Reducing the original Diophantine equation to a quadratic exponent, and under simplifying Pythagoras 
conditions, the three eigenvectors can be associated with acceleration, velocity and position vectors 
under a standard physical interpretation of URMT. The eigenvector solution additionally evolves with 
time, where time itself is a variational parameter. 

The eigenvector inner products are conservation equations and, for a unity eigenvalue, give the three 
most basic scalars {0,1,2}, all of which are invariant to temporal evolution (parametric transformation) 
of the eigenvectors, giving the transformations a unitary symmetry as per QM. This then leads to a 
modified ‘Quantum Physical Interpretation’, whereby the energy quantities are replaced by the action. 
This then leads to a second interpretation of the invariant eigenvalue to Planck’s constant. Thus, 
URMT has related its invariant eigenvalue to two physical constants, c and h, but with same 
mathematics. Although not demonstrated herein, URMT’s discrete eigenvector lattice solution shows 
inverse square law curvature with the eigenvalue tentatively thus also related to the gravitational 
constant ‘big  G’, see [2]#3. 

An example, five-dimensional 'Doppler solution' shows a huge initial acceleration at the earliest 
instance of time, decaying in accordance with the Hubble expansion law. A second example shows 
how relativistic mass can be introduced implicitly into URMT by addition of a single, new dynamical 
variable, i.e. the 'reduced velocity'. This leads directly to the relativistic energy-momentum equation 
and a reformulation of the rest mass energy in a symmetric form involving both the reduced velocity 
and the speed of light. Furthermore, temporal evolution of the higher dimensions leads to the 
geometric property of compactification, where the higher dimensions appear to shrink relative to the 
lower dimensions over long evolutionary periods, i.e. physical solutions are actually constructed in one 
dimension higher than they manifest themselves in reality. 

To keep the paper relatively short, some other important physical associations have had to be omitted. 
Nevertheless, it should be mentioned that URMT also has a six-dimensional representation of the 
Quark Flavour Model, stemming from URMT’s inherent possession of unitary symmetry. This also 
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leads to a three-fold increase in its solution space, and with this a straightforward explanation of three-
fold quark colour degeneracy [7]. 

9 Conclusions 

What originated as a study in the residue properties of a modified form of Fermat’s Last Theorem, and 
the resulting eigenvector solution in terms of unity roots, in particular with regard to their symmetry 
and invariants, appears to generate a surprisingly rich field of physical phenomena, and supports the 
author's premise that, at the smallest, Planck scale, nature reduces to some very simple rules, with its 
laws formulated as integer equations, and more the realm of number theory than physics. The laws of 
nature are thus reduced to the legal combinations of integers, which currently appear to be of quadratic 
degree, in particular hyperbolic and n-dimensional Pythagoras. 

 



An Overview of Unity Root Matrix Theory 2018 

Page 34 of 39 
Draft F 06/03/2018 

R J Miller, http://www.urmt.org 

 

10 References 

[1] Wiles A Modular elliptic curves and Fermat's Last Theorem 1995 Annals of Mathematics 142 
p443-551. 
[2] Miller R J, Unity Root Matrix Theory Physics in Integers, FastPrint Publishing 2011, ISBN 978-
184426-974-7. 

This book is broken into six separate papers, each paper is given a specific reference #1 to #6 as 
follows: 

[2]#1 Unity Root Matrix Theory Foundations 
[2]#2 Pythagorean Triples as Eigenvectors and Related Invariants 
[2]#3 Geometric and Physical Aspects 
[2]#4 Solving Unity Root Matrix Theory 
[2]#5 Unifying Concepts 
[2]#6 A Non-unity Eigenvalue 

[3] Sadri Hassani, Foundations of Mathematical Physics, Prentice-Hall International Editions, 1991, 
ISBN 0-13-327503-5. 

[4] The Berry-Keating Hamiltonian and the Local Riemann Hypothesis, M Srednicki, arxiv, 
http://arxiv.org/abs/1104.1850. 

[5] Unity Root Matrix Theory and the Riemann Hypothesis, R. J. Miller, 2013, a free PDF document 
available for download: http://www.urmt.org/urmt_riemann_link.pdf 

[6] H Goldstein, Classical Mechanics, Adison-Wesley, 1980, 978-0-20102-918-5. There is a later, 
revised edition: Goldstein Safko Poole, Classical Mechanics, Pearson Education Ltd. 978-1-29202-
655-8, but the original is the classic work. 

[7] Unity Root Matrix Theory, A Quark Flavour Model, Richard J. Miller, New Generation 
Publishing, 2016, ISBN 978-1-78719-212-6. 

[8] Alistair I M Rae, Quantum Mechanics, 3rd Edition, IOP Publishing 1992, ISBN 0 7503 0217 8. 

[9] Michio Kaku, Quantum Field Theory A Modern Introduction, Oxford University Press 1993, ISBN 
0-19-509158-2. 

[10] d'Inverno  R 1992 Introducing Einstein's Relativity Oxford University Press ISBN 0-19-859686-
3. 

[11] A P French, Special Relativity, MIT Introductory Physics Series, Nelson, 1979, ISBN 017-
771075-6, reprinted by Taylor and Francis 2009, see the Web. 

[12] Niven I, Zuckerman S, Montgomery H L, An Introduction to the Theory of Numbers 5th Edition, 
1991, John Wiley & Sons Inc. ISBN 0-471-54600-3. 

[13] Miller R J, Unity Root Matrix Theory Mathematical and Physical Advances Volume I, Bright Pen 
2013, ISBN 978-0-7552-1535-5. 

[14] Miller R J, Unity Root Matrix Theory Higher Dimensional Extensions, FastPrint Publishing 2012, 
ISBN 978-178035-296-1. 

[15] Miller R J, Unity Root Matrix Theory, Mathematical and Physical Advances Volume II, New 
Generation Publishing, 2014, ISBN 978-0-7552-1675-8. 

[16] H Davenport, The Higher Arithmetic, 6th Edition, Cambridge University Press, ISBN 0-521-
42227-2. 



An Overview of Unity Root Matrix Theory 2018 

Page 35 of 39 
Draft F 06/03/2018 

R J Miller, http://www.urmt.org 

 

11 Appendices 

11.1 Appendix (A) Unity Roots 

11.1.1 What is a Unity Root? 

Most readers will be familiar with the complex, nth roots of unity as given by the solutions to the 
polynomial 

 1nz . (A1) 

For the quadratic exponent, 2n , there are the two, real roots 1z . For general, non-zero 
exponent n , there are n unique roots, and all are complex for 2n  with their complex, polar form 
given by 

 nkiez /2 k ℤ, 1n . (A2) 

It is easily verified that this is the general solution since 

 nnkin ez )/2(  12  kie   (A3) 

Unlike the above, complex-valued roots, URMT is entirely based in integers and, in the field of 
number theory, there are integer equivalents to the above, but this also introduces an additional 
modulus in the process with subsequent modulo arithmetic, which then becomes the realm of 
congruences in number theory [16]. These integer roots are known as primitive (or unity) roots, and 
are a much-studied area in classical number theory. For example, a unity root ‘P’, exponent n, 
modulus x, is defined by the congruence relation (explained next) 

 )mod(1 xP n  ,  x ℤ, 2x . (A4) 

Note that the modulus x in (A4) can also be negative, but cannot meaningfully be zero or plus or minus 
one.  

In other words, when P is raised to the power n, its remainder, when divided by integer modulus x, is 
unity. For example, in the cubic exponent case, 3n , modulus 7x , one of three unity roots is 

2P  so that 

 )7mod(123  . (A5) 

This expands trivially to 17.123  , hence 32  gives a remainder of one when divided by seven. 
Note that, in number theory, the remainder is referred to as a residue and, given the power in this 
example is cubic, then the above equation is alternatively described as ‘one is a cubic residue of two, 
modulo 7’. 

For this cubic exponent example there are also three unique unity roots, as per a real-valued, cubic 
polynomial, and these are simply 1 and 2 

 )7mod(113   (A6a) 

 )7mod(123  . (A6b) 
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 )7mod(143  . (A6c) 

It is noted that unity is trivially a root for all exponents and modulus x, as per the real-valued 

equivalent, i.e. )mod(11 xn   for all 2x . 

Thus, there is always at least one unity trivial root ‘1’. More generally, in accordance with Lagrange’s 
theorem [16], for prime modulus x, there are always n distinct roots if, for arbitrary integer f, the 
modulus is of the form 1fn . In fact, neither the modulus nor the exponent have to be prime and, in 
fact, there may be more than n roots. However, for the purposes of this paper, it makes life simpler to 
keep with both prime moduli and exponents. Note that in the complex polynomial case of the nth 
degree (A1), there are always n unique roots, regardless of the form of the exponent n, i.e. be it prime, 
composite and or of the 1fn  form, as per a complex polynomial of the nth degree – this fact is 
known as the fundamental theorem of algebra, see [3]. 

Furthermore, there is no restriction that the modulus necessarily be positive, i.e. x could be negative, 
actually 2x , since a modulus of absolute, unity value always has a zero residue, i.e. all residues 
modulo 1 or -1 are zero  since 1 and -1 trivially divide every integer leaving no 9zero) remainder 

Also note that if P is a root then, for arbitrary integer m, so is mxP   since  

 )mod()( xPmxP nn  . (A9) 

In the example above, since 2 is a root, so too therefore is 9 ( 7.12  ) and 16 ( 7.22  ) etc., i.e. if 

)7mod(123   then )7mod(193   and )7mod(1163  . However, it is only necessary to restrict 

the roots P to the principle range, which is 1 to 1x  here, i.e. all values P modulo x, 1P  here for 
unity roots. 

This is really no different to the general complex case where, if z is a unity root (A2), so too is 
nimnkez /)(2    for arbitrary integer m, but only those in the range nk 0  need be considered. 

For prime exponent n, just as in the complex case, if z is a root (except the trivial root ‘1’), then so too 

is 2z , 3z  etc, and any root z forms a ‘generator’ of the cyclic group (order n) of roots [12]. In the 

above cubic exponent example, 2 is a root, and so too is 22 , i.e. 4 since )7mod(143  . 

On the other hand, whilst 32  is also a valid root, it is just a repeat of the smallest unity root (1) since 

)7mod(123  . Likewise, 42  repeats the root 2 since )7mod(224  , and 52  repeats the root 4’ 

since )7mod(425  . Thus, there are really only three distinct cubic roots modulo 7, i.e. the set 
{1,2,4}, and the three roots can be obtained from the generator 2. This is also the case using 4 instead 

of 2, i.e. 4, 24  and 34  which evaluate to 4, 2 and 1, modulo 7, respectively , i.e. the same set of roots 
{1,2,4}, just shuffled in a different order. 

Indeed, the complex roots of unity also form a cyclic group and, for prime exponent, any root (except 
‘1’) can act as a generator of all the other 1n  distinct roots. In other words, only a single root is 
required to be able to determine all other roots. For composite exponents, the roots still form cyclic 
groups, but these will have ‘proper’ sub-groups, i.e. sub-groups of order smaller than n, whereas cyclic 
roots for a prime exponent have no proper sub-groups. 
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In the above example, the exponent n is prime (3 is prime) and the modulus 7 is also prime. It should 
be noted that the modulus relates to the exponent by the simple arithmetic 13.27  , which is of the 

1fn  form mentioned further above, where 2f  here, and thus there are three roots by Lagrange’s 
Theorem. In fact, URMT literature usually states the following form: 

 12  nfx , (A10) 

where f would now be just one using the numbers above. This latter ‘f2n’ form is actually pertinent to 
odd, prime exponents. 

Whilst unity root P has been used in the example above, the URMT root Q is also defined similarly to 
P, but its modulus is coordinate y i.e. 

 )mod(1 yQ n  . (A11) 

There is also the URMT root R, which is actually defined as a root of minus one, modulo the 
coordinate z, i.e. 

 )mod(1 zR n  . (A12) 

This last twist, i.e. a change of root from one to minus one, is basically the URMT equivalent of nth 
degree complex roots of -1, i.e. 

 1nz . (A13) 

When using integers and modulo arithmetic, the negative root -1 is equivalent to 1z  modulo z, since 
)mod(11 zz   so that, alternatively, 

 )mod(1 zzR n  . (A15) 

In the cubic, modulo 7 example above, in addition to the three roots of unity +1, i.e. the set {1,2,4}, 
there are also three roots of -1. These are the set {3,5,6}, e.g.  

 )7mod(633   since )7mod(16  , i.e. )1(7.16  , (A16) 

and similarly )7mod(653   and )7mod(663  . 

Unlike the positive root case, the two non-unity values 3 or 5 do not as generators of the set but they 
can be used in combination with a positive root. For example, taking the positive root 2, and 
successively multiplying the negative root 3 by it, gives 6 and 12, i.e. -1 and 5 modulo 7, both of 
which are roots of -1, thus forming the set {3,6,5}. Likewise for negative root 5, successively 
multiplying it by the positive root 2 gives 10 (=3 modulo 7) and 20 (=6 modulo 7) and the same set of 
roots of -1, reshuffled as in {5,3,6}. 

Thus, taking into account both positive and negative roots, there are two sets of three roots in this 
example, i.e. six roots in all, {1,2,4} and {3,5,6}. Given the principle range of residues modulo 7 is the 
seven integer values 0 to 6, only zero is missing. Of course, raising zero to any non-zero power gives 
zero, so it can never be a unity root. Whilst obvious, the point here is that the zero value is accounted 
for by the ‘+1’ in the form 12 nf  (A10), and the ‘2n’ accounts for the two sets of three, for the 

cubic exponent, which makes 1f . The total 12 f  is therefore 7 i.e. the same as the modulus. 

Note that the next prime modulus of 12 nf  form, for 3n , is 13, and f is now 2. In this case there 
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are still only three positive unity roots and three negative unity roots (three in each case because the 
exponent remain cubic), thus six roots in total, and with a principal range, modulo 13, of thirteen 
integer values 0 to 12, there remain 7 values that are not unity roots - and you can therefore forget 
about them. This last point meaning that, in general, for arbitrary prime modulus, the exponent is 
usually much smaller than the modulus and most values in the principal range are not unity roots. 

11.1.2 Conjugate Roots 

In the complex case (A2), the unity roots have conjugate forms given by 

 nkiez /2*  , (A17) 

which are also unity roots, i.e. 

   1* 
n

z , (A18) 

and in URMT, similarly, the unity roots RQP ,,  have conjugate forms RQP ,,  that also satisfy the 

same unity root properties as per their standard forms RQP ,, , i.e. 

 )mod(1 xP n  , (A19) 

 )mod(1 yQ n  , (A20) 

 )mod(1 zR n  . (A21) 

In addition, they relate to their standard forms by the following 'conjugate relations' 

 )(mod1 xPP n , )(mod1 yQQ n , )(mod1 zRR n  (A22) 

From these definitions, it is easily seen that the products PP , QQ  and RR  all equate to unity, i.e. 

 )(mod1 xPPP n  , )(mod1 yQQQ n  , )(mod1 zRRR n  . (A23) 

which is also as per the complex case, i.e. 

 10*  ezz . (A24) 

In both complex and URMT cases, the roots conjugated twice return the same value 

   zz 
** , )(mod xPP   etc. for Q and R. (A25) 

The concept of conjugates extends wider in Physics to, for example, the representation of particles and 
their conjugate anti-particles [7] or, more generally, wave-functions and their Hermitian conjugate 
forms in QM[8]. 
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11.2 Appendix (B) The Reduced Velocity M 

In URMT, a very useful quantity, termed the 'reduced-velocity', and denoted by the symbol M , is 
defined as follows in terms of the speed of light c, and the dilation factor   (5.2): 

 

c

M  , cM 0  for 1 . (B1) 

It is seen that with 1  then M  is less than the speed of light. 

The following two limiting cases are of note, derived from the definition of   (5.2), 

 cv      , 0M , (B2) 

 0v    1 , cM  . (B3) 

For a massless particle, e.g. a photon or graviton with a velocity that of the speed of light, then case 
(B2) applies and M  is zero. For a particle at rest, with zero velocity, then case (B3) applies and M  is 
the speed of light c . 

With these points in mind, M  is termed 'reduced' because it is zero at the speed of light and grows to 
the speed of light as the speed v  decreases to zero, i.e. it is the speed reduced from that of c , whereas 
v  increases from 0 to c . When M  is greater than zero it is considered equivalent (but not 
numerically the same) to the speed v  of a particle with finite mass and sub-luminal velocity, i.e. 

cv  . 

From M  (B1) and   (5.2) the following important relation between c , M and v  is obtained 

 2220 cvM  , (B4) 

which rearranges to give an alternative form for defining M  as 

 22 vcM  , (B5) 

where the positive root is taken for positive   and c . 

The relationship (B4) is yet another Pythagoras equation, and there seems to be no escaping this 
simple equation throughout URMT physics. 

What makes M  extra special is that it is also a dynamical variable in the URM5 unity root matrix 

50A  (6.1), and not just an ad-hoc definition introduced for algebraic or physical convenience. 

 


